Neeldhara
  • About
  • Research
    • Overview
    • People
    • Publications
    • Surveys
  • Teaching
    • Courses
    • Materials
  • Lists
    • Puzzles
    • Bookmarks
  • Exposition
    • Talks
    • Videos
  • Events
  • Blog

Competitive Programming

  • Competitive Programming
    • W01
      • Ad hoc and Implementation
      • M 03 (Numbers Game)
      • M 2 (Reversort Engineering)
      • M 4 (Will It Stop?)
      • Welcome and Initial Setup
    • W02
      • M 1 (Trouble Sort)
      • M 2 (The Meeting Place Cannot be
      • M 3 (Magic Ship)
      • M 4 (Simple Skewness)
    • W03
      • M 1 (Pancake Flipping)
      • M 2 (Islands War)
      • M 3 (Stable Marriage-I)
      • M 3 (Stable Marriage-II)
      • M 4 (When Greedy Does Not Work - Coin Change)
      • M 4 (When Greedy Does Not Work - Guarding a Museum)
      • M 4 (When Greedy Does Not Work - Traveling Salesman)
    • W04
      • M 1 (An Introduction-Part II)
      • M 1 (An Introduction-Part III)
      • M 1 (An Introduction)
      • M 2 (Destroying Array-I)
      • M 2 (Destroying Array-II)
      • M 3 (War-I)
      • M 3 (War-II)
      • M 3 (War-III)
    • W05
      • M 1 (BFS and DFS)
      • M 1 (Graph Traversals)
      • M 2 (Mahmoud and Ehab and the bipartiteness)
      • M 3 (Cover It!)
      • M 4 (Diamond Inheritance)
    • W06
      • M 1 (Dijkstra’s Algorithm-Sending Email)
      • M 1 (Dijkstra’s Algorithm)
      • M 1 (Dijkstra’s Algorithm)
      • M 1 (Modified Dijkstra)
      • Bellman-Ford | Negative
      • Bellman-Ford | Negative
      • M 3 (APSP [Floyd-Warshall] | Page Hopping)
      • M 3 (APSP [Floyd-Warshall] | Page Hopping)
    • W07
      • M 1 (Blingor’s Network | Foundations
      • M 1 (Kruskal’s Algorithm)
      • M 1 (Prim’s Algorithm)
      • M 2 (Cherries Mesh)
      • M 3 (Hierarchy)
      • M 4 (Island Hopping)
    • W08
      • M 1 (Ford-Fulkerson for Max Flow)
      • M 1 (Implementing Edmonds-Karp)
      • M 1 (Introduction)
      • M 2 (Maximum Matching via MaxFlow)
      • Sport Elimination via MaxFlow
    • W09
      • MaxFlow-MinCut Duality
      • Minimum Vertex Cover via Max Flow | SAM I AM (UVA 11419)
      • Police Chase
    • W10
      • Bottom-Up DP | Dice Combinations (CSES Problem Set)
      • Introduction | Frogs 1 (AtCoder Educational DP Contest)
      • Memoization | Frogs 1 (AtCoder Educational DP Contest)

Competitive Programming

Lecture notes coming soon!


© 2022 • Neeldhara Misra • Credits •

 

Corrections? Please leave a comment here or a PR in this repository, thanks!

I’d rather be a failure at something I love than a success at something I hate.

George Burns

You live and you learn — at any rate, you live.

Douglas Adams

A problem worthy of attack proves its worth by fighting back.

Paul Erdos

×