Neeldhara
  • About
  • Research
    • Overview
    • People
    • Publications
    • Surveys
  • Teaching
    • Courses
    • Materials
  • Lists
    • Puzzles
    • Bookmarks
  • Exposition
    • Talks
    • Videos
  • Events
  • Blog

191014K02 | Day 1 Lecture 2

191014K02: Day 1 Lecture 2

Back to the Course Page

Integer Linear Programs

An integer linear program involves n variables x_1, x_2, \ldots, x_n \in \mathbb{Z} and a linear objective function to be optimized.

In particular, we would like to minimize or maximize a function that looks like: \sum_{i = 1}^n {\color{indianred}c_i} x_i,

subject to m linear inequalities:

\begin{aligned} a_1^1 x_1+a_2^1 x_2+ \cdots + a_i^1 x_i + \cdots+a_n^1 x_n & \leqslant b_1 \\ a_1^2 x_1+a_2^2 x_2+ \cdots + a_i^2 x_i + \cdots+a_n^2 x_n & \leqslant b_2 \\ \vdots & \\ a_1^j x_1+a_2^j x_2+ \cdots + a_i^j x_i + \cdots+a_n^3 x_n & \leqslant b_j\\ \vdots & \\ a_1^m x_1+a_2^m x_2+ \cdots + a_i^m x_i + \cdots+a_n^m x_n & \leqslant b_m. \end{aligned}

Here {\color{indianred}c_1,\cdots,c_n} are some constants in \mathbb{Z} or \mathbb{Q}

So given the a_i^j’s as input (1 \leqslant i \leqslant n; 1 \leqslant j \leqslant m), the goal is to set the x_i’s such that:

  • all the inequalities are satisfied, and
  • the objective function is optimized1.

Footnotes

  1. i.e, maximized or minimized↩︎


© 2022 • Neeldhara Misra • Credits •

 

Corrections? Please leave a comment here or a PR in this repository, thanks!

I’d rather be a failure at something I love than a success at something I hate.

George Burns

You live and you learn — at any rate, you live.

Douglas Adams

A problem worthy of attack proves its worth by fighting back.

Paul Erdos

×