Neeldhara
  • About
  • Research
    • Overview
    • People
    • Publications
    • Surveys
  • Teaching
    • Courses
    • Materials
  • Lists
    • Puzzles
    • Bookmarks
  • Exposition
    • Talks
    • Videos
  • Events
  • Blog

191014K02 | Day 4 Lecture 1

191014K02: Day 4 Lecture 1

Back to the Course Page

Isolation Lemma

Here’s our key tool for the day!

Isolation Lemma

Let UUU be a universe with ∣U∣=n|U|=n∣U∣=n and let F\cal FF be a family of sets over UUU. Pick a random weight function w:U→{1,⋯ ,W}w: U \rightarrow\{1, \cdots ,W\}w:U→{1,⋯,W}. Then:

Pr⁡[F has a unique min weight set]⩾nW\operatorname{Pr}[{\color{indianred}\cal F \text{ has a \textbf{unique} min weight set}}] \geqslant \frac{n}{W}Pr[F has a unique min weight set]⩾Wn​

Call an element uuu critical if:

  1. uuu is in some minimum weight set, and
  2. if w(u)w(u)w(u) is increased by 1 then uuu is no longer in any minimum weight set.

© 2022 • Neeldhara Misra • Credits •

 

Corrections? Please leave a comment here or a PR in this repository, thanks!

I’d rather be a failure at something I love than a success at something I hate.

George Burns

You live and you learn — at any rate, you live.

Douglas Adams

A problem worthy of attack proves its worth by fighting back.

Paul Erdos

×