Mash Equilibria for

Two-Player Matrix Games

Repeated Until Collison

aka RUC

Two players mo Batter & Bowler

Game proceeds in multiple rounds.

I wo players mo Batter & Bowler

In each round, the players simultaneously pick numbers from

50,1,2,3,4,5,63

lwo players m Batter & Bowler

In each round, the players simultaneously pick numbers from

20,1,2,3,4,5,63

I wo players mo Batter & Bowler 2

In each round, the players simultaneously pick numbers from 20,1,2,3,4,5,63

I wo players m Batter E Bowler 2

In each round, the players simultaneously pick numbers from 20,1,2,3,4,5,63

I wo players mo Batter & Bowler 2+5

In each round, the players simultaneously pick numbers from

20,1,2,3,4,5,63

lwo players mo Batter & Bowler 2+5

In each round, the players simultaneously pick numbers from 20,1,2,3,4,5,63

I wo players mo Batter & Bowler 2+5+0

In each round, the players simultaneously pick numbers from 30,1,2,3,4,5,63

Game g³ Over! g³

I wo players mo Batter & Bowler 2+5+0

maximize

In each round, the players simultaneously pick numbers from 30,1,2,3,4,5,63

mininize

Max Player (P)

Termination Condition

Hand Cricket

$A_{ij} = B_{ij} = 0$ if $i \neq j$ otherwise

Intuitively - how to win a RUC game?

Min player wants the game to end soon.

win a RUC game?

Min player wants the game to end Goon.

1

actions uniformly at random

actions uniformly at random - Scoring moves more offen

(x*, y*) is NE if BOTH of the following hold:

(no benefit $X \to X$) $\forall x \in \mathcal{X}, \quad f_1(x, y^*) \leq f_1(x^*, y^*)$ (no benefit $y^* \rightarrow y$) $\forall y \in \mathcal{Y}$, $f_2(x^*, y) \neq f_2(x^*, y^*)$

Two player Single-round games.

$$\int_{70}^{0} \left[X_{1} + \cdots + X_{n} = 1 \right]$$

and
$$\chi = \chi = \Lambda_n$$
.

and
$$f_2(X,Y) = X^T B Y$$

Two player $\Delta_n := \{ \chi \in \mathbb{R}_{7}^{n} \}$ Let ABER^{mx} $f_1(x, y) = x^T A y$

$$\int_{70}^{0} \left[X_{1} + \cdots + X_{n} = 1 \right]$$

and
$$\chi = \chi = \Lambda_n$$
.

and
$$f_2(X,Y) = X^T B_Y$$

A Nach Equilibrium always exists

* under reasonable assumptions

about A and B.

about A and B.

Let XEAn. The Station

SRUC games us players can only play stationary strategies.

In each round, pick action i with probability Xi. (Actions are picked independently in each round)

f₁(x,y) m player 1's total expected score

f,(x,y) ~, player is total expected score

f,(x,y) no player is total expected score

f,(x,y) no player is total expected score

 $f_1(x,y) = \sum_{i=1}^{n} \sum_{j=1}^{n} x_i y_j \left(A(i,j)\right)$

f,(x,y) no player is total expected score $f_{1}(x,y) = \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} x_{i} y_{j} \left(A(i,j) + f_{1}(x,y) \int [i \neq j] \right)$

f,(x,y) ~, player is total expected score $f_1(x,y) = \sum_{i=1}^{n} \sum_{j=1}^{n} X_i y_j \left(A(i,j) + f_1(x,y) \int [i \neq j] \right)$

 $= \chi^{T} A \chi + f_{1}(\chi,\chi) \left(1 - \chi^{T}\chi\right)$

 $f_{1}(x,y) = \frac{\chi^{\tau} A_{\gamma}}{\chi^{\tau} y}$

 $f_{1}(x,y) = \frac{x^{T}Ay}{-1}$ χ^{τ} vel X By 00 χ τ 🔒

$$A = B = \begin{pmatrix} 0 & S_{1} \\ S_{2} & 0 \end{pmatrix}$$

$$A = B = \begin{pmatrix} 0 & S_1 \\ S_2 & 0 \end{pmatrix}$$

 $\mathcal{K} = \sqrt{S_1} + \sqrt{S_2}$

$$A = B = \begin{pmatrix} 0 & i \\ 10^4 & 0 \end{pmatrix}$$

$$X^* = \begin{pmatrix} \sqrt{S_2} & \sqrt{S_1} \\ \sqrt{2} & \sqrt{2} & \sqrt{2} & \sqrt{2} \\ \sqrt{2} & \sqrt{2} & \sqrt{2} & \sqrt{2} \\ \sqrt{2} & \sqrt{2} & \sqrt{2} \\$$

Spose A has an eigenpair

 (λ_{A}, y^{*})

S.t. $y^* \in A_n$.

Spose A has an eigenpair (λ_{A}, y^{*}) $(A \cdot y^{*} = \lambda_{A} y^{*})$

S.t. $y^* \in A_n$.

S.t. $\chi^* \in \Delta_n$.

 $f_{2}(x^{*},\gamma) = \frac{\chi^{*} \mathcal{B} \gamma}{\chi^{*} \mathcal{V}} = \lambda_{B}$

Perron-Frobenius Theorem

(Detour)

Perron-Frobenius Theorem

Matrix $M \rightarrow Graph G_{M}$ (nxn)

(Detour)

Perron-Frobenius Theorem

$(n \times n)$

Matrix M -> Graph Gm

 $V(G_{M}) = \{1, 2, \ldots, n\}$

(Detour)

Perron-Frobenius Theorem

$(n \times n)$

 $V(G_{M}) =$

 $E(G_{M}) =$

Matrix M -> Graph Gm

(Detour)

Perron-Frobenius Theorem

 $(n \times n)$

Matrix M -> Graph Gm

(Detour)

Perron-Frobenius Theorem

 $(n \times n)$

Matrix M -> Graph Gm

 $V(G_{M}) = \{1, 2, ..., n\}$ X X $E(G_{M}) = \{(i,j) \mid M_{ij} \neq 0\}$ $l((i,j)) = M_{ij}$

(Detour)

Perron-Frobenius Theorem

 $(n \times n)$

Matrix M -> Graph Gm

 $V(G_{M}) = \{1, 2, ..., n\}$ $E(G_{M}) = \{(i,j) \mid M_{ij} \neq 0\}$ $l((i,j)) = M_{ij}$

(Detour)

Perron-Frobenius Theorem

 $(n \times n)$

Matrix M -> Graph Gm

 $V(G_{M}) = \{1, 2, ..., n\}$ $E(G_{M}) = \{(i,j) \mid M_{ij} \neq 0\}$ $l((i,j)) = M_{ij}$

(Detour)

Perron-Frobenius Theorem

 $(n \times n)$

Matrix M -> Graph Gm

 $V(G_{M}) = \{1, 2, ..., n\}$ $E(G_{M}) = {(ij) | M_{ij} \neq 0}$ $l((i,j)) = M_{ij}$

(Detour)

Perron-Frobenius Theorem

 $(n \times n)$

Matrix M -> Graph Gm

 $V(G_{M}) = \{1, 2, ..., n\}$ $E(G_{M}) = \{(i,j) \mid M_{ij} \neq 0\}$ $l((i,j)) = M_{ij}$

(Detour)

Perron-Frobenius Theorem

Matrix M $(n \times n)$ irreducib

 $V(G_m) = E(G_m) =$

Perron-Frobenius Theorem

1. There is a unique eigenvalue $\lambda^{\star} \in \mathbb{R}_{>0}$ whose absolute value is bigger than all other eigenvalues.

Perron-Frobenius Theorem

Let M be an irreducible matrix N, entries in No.

