
1. d Ticktacktoe Genera Ize 

T he world's simplest, oldest and most popular pencil-and-pa- 
per ga:me is still ticktacktoe, and combinatorial mathemati- 
cians, often with the aid of computers, continue to explore 
unusual variations and generalizations of it. In one variant 
that goes back to ancient times the two players are each given 
three counters, and they take turns first placing them on the 
three-by-three board and then moving them from cell to cell 
until one player gets his three counters in a row. (I discuss 
this gaime in my Scientific American Book of Mathematical Games 
and Diversions.) Moving-counter ticktacktoe is the basis for a 
number of modern commercial games, such as  John Scarne's 
Teeko and a new game called Touche, in which concealed 
magnets cause counters to flip over and become opponent 
pieces.. 
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Standard ticktacktoe can obviously be generalized to larger 
fields. For example, the old Japanese game of go-moku ("five 
stones") is essentially five-in-a-row ticktacktoe played on a go 
board. Another way to generalize the game is to play it on 
"boards" of three or more dimensions. These variants and oth- 
ers are discussed in my Wheels, Life book. 

In March, 1977, Frank Harary devised a delightful new 
way to generalize ticktacktoe. Harary was then a mathemati- 
cian a t  the University of Michigan. He is now the Distin- 
guished Professor of Computer Science at New Mexico State 
University, in Las Cruces. He has been called Mr. Graph 
Theory because of his tireless, pioneering work in this rapidly 
growing field that is partly combinatorial and partly topologi- 
cal. Harary is the founder of the Journal of Combinatorial 
Theory and the Journal of Graph Theory, and the author of 
Graph Theory, considered the world over to be the definitive 
textbook on the subject. His papers on graph theory, written 
alone or in collaboration with others, number more than 500. 
Harary ticktacktoe, as I originally called his generalization of 
the game, opens up numerous fascinating areas of recrea- 
tional mathematics. Acting on his emphatic request, I now 
call it animal ticktacktoe for reasons we shall see below. 

We begin by observing that standard ticktacktoe can be 
viewed as a two-color geometric-graph game of the type Har- 
ary calls an achievement game. Replace the nine cells of the 
ticktacktoe board with nine points joined by lines, as is shown 
in Figure 90. The players are each assigned a color, and they 
take turns coloring points on the graph. The first player to 
complete a straight line of three points in his color wins. This 
game is clearly isomorphic with standard ticktacktoe. It is 
well known to end in a draw if both players make the best 
possible moves. 

Let us now ask: What is the smallest square on which the 
first player can force a win by coloring a straight (non-diago- 
nal) three-point path? It is easy to show that it is a square of 
side four. Harary calls this side length the board number b of 
the game. It  is closely related to the Ramsey number of gen- 
eralized Ramsey graph theory, a number that plays an impor- 
tant part in the Ramsey games. (Ramsey theory is a field in 
which Harary has made notable contributions. It was in a 1972 
survey paper on Ramsey theory that Harary first proposed 
making a general study of games played on graphs by coloring 
the graph edges.) Once we have determined the value of b we 



FIGURE 90 Ticktacktoe as a two-coloring game 

can ask a second question. In how few moves can the first 
player win? A little doodling shows that on a board of side 
four the first player can force a win in only three moves. Har- 
ary calls this the move number m of the game. 

In ticktacktoe a player wins by taking cells that form a 
straight, order-3 polyomino that is either edge- or corner-con- 
nectedl. (The corner-connected figure corresponds to taking 
three cells on a diagonal.) Polyominoes of orders 1 through 5 
are depicted in Figures 91 and 92. The polyomino terminol- 
ogy was coined by Solomon W. Golomb, who was the first to 
make ;3 detailed study of these figures. Harary prefers to fol- 
low th~e usage of a number of early papers on the subject and 
call them "animals." I shall follow that practice here. 

We are now prepared to explain Harary's fortuitous gen- 
eraliza~tion. Choose an animal of any order (number of square 
cells) ;and declare its formation to be the objective of a tick- 
tacktoselike game. As in ticktacktoe we shall play not by 
coloring spots on a graph but by marking cells on square ma- 
trixes with noughts and crosses in the usual manner or by 
coloring cells red and green as one colors edges in a Ramsey 
graph game. Each player tries to label or color cells that will 
form tlhe desired animal. The animal will be accepted in any 
orientation and, if it is asymmetrical, in either of its mirror- 
image forms. 
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FIGURE 91 Animals of 1 cell through 4 cells 

Our first task is to determine the animal's board number, 
that is, the length of the side of the smallest square on which 
the first player can, by playing the best possible strategy, force 
a win. If such a number exists, the animal is called a winner, 
and it will be a winner on all larger square fields. If there is 
no board number, the animal is called a loser. If the animal 
chosen as the objective of a game is a loser, the second player 
can always force a draw, but he can never force a win. The 
clever proof of this fact is well known and applies to most 
ticktacktoelike games. Assume that the second player has a 
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FIGURE 92 The 12 animals of 5 cells 



winning strategy. The first player can "steal" the strategy by 
first making an irrelevant opening move (which can never be 
a liability) and thereafter playing the winning strategy. This 
finding contradicts the assumption that the second player has 
a winning strategy, and so that assumption must be false. 
Hence the second player can never force a win. If the animal 
is a winner and b is known, we next seek m, the minimum 
number of moves in which the game can be won. 

For the 1-cell animal (the monomino), which is trivially a 
winner, b and m are both equal to 1. When, as in this case, m 
is equal to the number of cells in the animal, Harary calls the 
game economical, because a player can win it without having 
to take any cell that is not part of the animal. The game in 
which the objective is the only 2-cell animal (the domino) is 
almost as trivial. It is also economical, with b and m both 
equal to 2. The games played with the two 3-cell animals (the 
trominoes) are slightly more difficult to analyze, but the reader 
can easily demonstrate that both are economical: for the L- 
shaped 3-cell animal b and m are both equal to 3, and for the 
straight 3-cell animal b equals 4 and m equals 3. This last 
game is identical with standard ticktacktoe except that cor- 
ner-connected, or diagonal, rows of three cells are not counted 
as wins. 

It  is when we turn to the 4-cell animals (the tetrominoes) 
that the project really becomes interesting. Harary has given 
each of the five order-4 animals names, as is shown in Figure 
9 1. Readers may enjoy proving that the b and m numbers given 
in the illustration are correct. Note that Fatty (the square te- 
tromino) has no such numbers and so is labeled a loser. It was 
Andreas R. Blass, one of Harary's colleagues at Michigan, who 
proved that the first player cannot force Fatty on a field of 
any size, even on the infinite lattice. Blass's result was the 
first surprise of the investigation into animal ticktacktoe. From 
this finding it follows at once that any larger animal contain- 
ing a two-by-two square also is a loser: the second player sim- 
ply plays to prevent Fatty's formation. More generally, any 
animal that contains a loser of a lower order is itself a loser. 
Harary calls a loser that contains no loser of lower order a 
basic loser. Fatty is the smallest basic loser. 

The proof that Fatty is a minimal loser is so simple and 
elegant that it can be explained quickly. Imagine the infinite 
plane tiled with dominoes in the manner shown a t  the top of 
Figure 93. If Fatty is drawn anywhere on this tiling, it must 



FIGURE 93 Tiling patterns (left) for the 12 basic losers (right) 

contain a domino. Hence the second player's strategy is sim- 
ply to1 respond to each of his opponent's moves by taking the 
other cell of the same domino. As a result the first player will 
never be able to complete a domino, and so he will never be 
able to complete a Fatty. If an animal is a loser on the infinite 
board, it is a loser on all finite boards. Therefore Fatty is al- 
ways a loser regardless of the board size. 

E.arly in 1978 Harary and his colleagues, working with 
only the top four domino tilings shown in Figure 93 estab- 
lishecl that all but three of the 12 5-cell animals are losers. 
Among the nine losers only the one containing Fatty is not a 
basic loser. Turning to the 35 6-cell animals, all but four con- 



tain basic losers of lower order. Of the remaining four pos- 
sible winners three can be proved losers with one of the five 
tilings shown in the illustration. The animals that can be proved 
basic losers with each tiling pattern are shown alongside the 
pattern. In every case the proof is the same: it is impossible 
to draw the loser on the associated tiling pattern (which is 
assumed to be infinite) without including a domino; therefore 
the second player can always prevent the first player from 
forming the animal by following the strategy already de- 
scribed for blocking Fatty. There are a total of 12 basic losers 
of order six or lower. 

It is worth noting how the tiling proof that the straight 
animal of five cells is a loser (another proof that was first found 
by Blass) bears on the game of go-moku. If the game is limited 
to an objective of five adjacent cells in a horizontal or vertical 
line (eliminating wins by diagonal lines), the second player 
can always force a draw. When diagonal wins are allowed, the 
game is believed to be a first-player win, although as far as I 
know that has not yet been proved even for fields larger than 
the go board. 

The only 6-cell animal that may be a winner is the one 
that I named Snaky: 
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Although they have not yet been able to prove this animal is 
a winner, they conjecture its board number, if any, is no larger 
than 15 and its move number is no larger than 13. This asser- 
tion is the outstanding unsolved problem in animal ticktack- 
toe theory. Perhaps a reader can prove Snaky is a loser or 
conversely show how the first player can force the animal on 
a square field and determine its board and move numbers. 

All the 107 order-7 animals are known to be losers be- 
cause each contains a basic loser. Therefore since every higher- 
order animal must contain an order-7 animal, it can be said 
with confidence that there are no winners beyond order 6. If 
Snaky is a winner, as Harary and his former doctoral student 
Geoffrey Exoo conjecture, there are, by coincidence, exactly 
a dozen winners-half of them economical-and a dozen basic 
losers. 

209 



Any 4- or 5-cell animal can be the basis of a pleasant pen- 
cil-and-paper game or a board game. If both players know the 
full analysis, then depending on the animal chosen either the 
first player will win or the second player will force a draw. 
As in ticktacktoe between inexpert players, however, if this 
knowledge is lacking, the game can be entertaining. If the 
animarl chosen as the objective of the game is a winner, the 
game is best played on a board of side b  or b -  1. (Remember 
that al square of side b -  1 is the largest board on which the 
first pllayer cannot force a win.) 

All the variations and generalizations of animal ticktack- 
toe that have been considered so far are, as  Harary once put 
it, "Ramseyish." For example, one can play the misere, or re- 
verse, form of any game-in Harary's terminology an avoid- 
ance game-in which a player wins by forcing his opponent 
to color the chosen animal. 

Avoidance games are unusually difficult to analyze. The 
second player trivially wins if the animal to be avoided is the 
mono~mino. If the domino is to be avoided, the second player 
obvioiusly wins on the 2 x 2 square, and almost as  obviously 
on the 2 x 3 rectangle. 

On a square board of any size the first player can be forced 
to cornplete the L-shaped 3-cell animal. Obviously the length 
of the square's side must be at  least 3 for the game to be 
meaningful. If the length of the side is odd, the second player 
will win if he follows each of his opponent's moves by taking 
the cell symmetrically opposite the move with respect to the 
center of the board. If the first player avoids taking the cen- 
ter, he will be forced to take it on his last move and so will 
lose. [f he takes it earlier in the game without losing, the sec- 
ond player should follow with any safe move. If the first player 
then takes the cell that is symmetrically opposite the second 
player's move with respect to the center, the second player 
should again make a harmless move, and so on; otherwise he 
should revert to his former strategy. If the length of the square's 
side is even, this type of symmetrical play leads to a draw, 
but the second player can still win by applying more compli- 
cated tactics. 

Oln square boards the straight 3-cell animal cannot be 
forced on the first player. The proof of this fact is a bit diffi- 
cult, even for the three-by-three square, but as a result no 
larger animal containing the straight 3-cell species can be 
forced on any square board. (The situation is analogous to that 
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of basic losers in animal-achievement games.) Hence among 
the 4-cell animals only Fatty and Tippy remain ds possible 
nondraws. Fatty can be shown to be a draw on any square 
board, but Tippy can be forced on the first player on all square 
boards of odd side. The complete analysis of all animal-avoid- 
ance games is still in the early stages and appears to present 
difficult problems. 

Harary has proposed many other nontrivial variants of the 
basic animal games. For example, the objective of a game can 
be two or more different animals. In this case the first player 
can try to form one animal and the second player the other, 
or both players can try to form either one. In addition, 
achievement and avoidance can be combined in the same game, 
and nonrectangular boards can be used. It  is possible to in- 
clude three or more players in any game, but this twist intro- 
duces coalition play and leads to enormous complexities. The 
rules can also be revised to accept corner-connected animals 
or animals that are both edge- and corner-connected. At the 
limit, of course, one could make any pattern whatsoever the 
objective of a ticktacktoelike game, but such broad generali- 
zations usually lead to games that are too complicated to be 
interesting. 

Another way of generalizing these games is to play them 
with polyiamonds (identical edge-joined equilateral triangles) 
or polyhexes (identical edge-joined regular hexagons) respec- 
tively on a regular triangular field or a regular hexagonal field. 
One could also investigate games played with these animals 
on less regular fields. An initial investigation of triangular 
forms, by Harary and Heiko Harborth, is listed in the bibli- 
ography. 

The games played with square animals can obviously be 
extended to boards of three or more dimensions. For ex- 
ample, the 3-space analogue of the polyomino is the polycube: 
n unit cubes joined along faces. Given a polycube, one could 
seek b and m numbers based on the smallest cubical lattice 
within which the first player can force a win and try to find 
all the polycubes that are basic losers. This generalization is 
almost totally unexplored, but see the bibliography for a pa- 
per on the topic by Harary and Michael Weisbach. 

As I have mentioned, Blass, now at Pennsylvania Univer- 
sity, is one of Harary's main collaborators. The others include 
Exoo, A. Kabell and Heiko Harborth, who is investigating 
games with the triangular and hexagonal cousins of the square 



animals. Harary is still planning a book on achievement and 
avoidance games in which all these generalizations of tick- 
tacktoe and many other closely related games will be ex- 
plored, and he is also persuading his current computer sci- 
ence students to develop computer programs for playing these 
games both offensively and defensively. This is the area of A1 
(artificial intelligence) known as game-playing programs. 

In giving the proof that a second player cannot have the win 
in most ticktacktoe-like games, I said that if the first player 
always wins on a board of a certain size, he also wins on any 
larger board. This is true of the square boards with which 
Harairy was concerned, but is not necessarily true when such 
games are played on arbitrary graphs. A. K. Austin and C. J. 
Knight, mathematicians at  the University of Sheffield, in 
England, sent the following counterexample. 

Clonsider the graph at the left of Figure 94, on which three- 
in-a-row wins. The first player wins by taking A. The second 
player has a choice of taking a point in either the small or the 
large triangle. Whichever he chooses, the first player takes a 
corner point in the other triangle. The opponent must block 
the threatened win, then a play in the remaining corner of the 
same triangle forces a win. 

FIGURE 94 First player wins on graph at left, but second player 
can force a draw on enlarged graph at right 
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Now enlarge the "board" by adding two points as shown 
on the right in Figure 94. The second player can draw by 
playing at B. If the first player does not start with A ,  the sec- 
ond player draws by taking A .  

Achievement and avoidance games played on graphs ob- 
viously open up endless possibilities that will be explored in 
Harary's forthcoming book. 
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