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Abstract

We study the partial vertex cover problem. Given a graph G = (V,E), a weight
function w : V → R+, and an integer s, our goal is to cover all but s edges, by picking a set of
vertices with minimum weight. The problem is clearly NP-hard as it generalizes the well-known
vertex cover problem. We provide a primal-dual 2-approximation algorithm which runs in
O(n log n+m) time. This represents an improvement in running time from the previously known
fastest algorithm.

Our technique can also be used to get a 2-approximation for a more general version of the
problem. In the partial capacitated vertex cover problem each vertex u comes with a
capacity ku. A solution consists of a function x : V → N0 and an orientation of all but s edges,
such that the number of edges oriented toward vertex u is at most xuku. Our objective is to find
a cover that minimizes

∑

v∈V
xvwv. This is the first 2-approximation for the problem and also

runs in O(n log n + m) time.
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1 Introduction

The vertex cover problem has been widely studied [14, 18]. In the simplest version, we are given
a graph G = (V, E) and are required to pick a minimum size subset of vertices to cover all the
edges of the graph. An edge is said to be covered if at least one of its incident vertices is picked.
The problem is NP-hard and was one of the first problems shown to be NP-hard in Karp’s seminal
paper [17]. However, several different approximation algorithms have been developed for it [14].
These algorithms develop solutions within twice the optimal in polynomial time.

Recently several generalizations of the vertex cover problem have been considered. Bshouty and
Burroughs [4] were the first to study the partial vertex cover problem. In this generalization
we are not required to cover all edges of the graph, any s edges may be left uncovered. By allowing
some number of edges to be left uncovered we hope to obtain a cover with substantially lower cost.
It can be regarded as a trade off between cost and coverage.

The paper by Bshouty and Burroughs [4] was the first to give a factor 2 approximation for
partial vertex cover using LP-rounding. Subsequently, combinatorial algorithms with the same
approximation guarantee were proposed. Let the input be a graph on n vertices and m edges.
Hochbaum [13] presented an O(nm log n2

m
log n) time algorithm based on Lagrangian Relaxation;

Bar-Yehuda [1] developed an O(n2) time algorithm using the local-ratio technique; finally, a primal-
dual algorithm which runs in O(n(n log n + m)) time was given by Gandhi et al. [7]. Our approach
builds on the work of Gandhi et al. [7].

The main result of this paper is a primal-dual 2-approximation algorithm for partial vertex
cover which runs in O(n log n + m) time. This represents an improvement in running time over the
previously known algorithms for the problem. One additional benefit of our method is that it can
be used to solve a more general version of the problem.

Motivated by a problem in computational biology, the capacitated vertex cover problem
was proposed by Guha et al. [9]. For each vertex v ∈ V we are given a capacity kv and a weight
wv. A capacitated vertex cover is a function x : V → N0 such that there exists an orientation of all
edges in which the number of edges directed into v ∈ V is at most kvxv. When e is oriented toward
v we say e is covered by or assigned to v. The weight of the cover is

∑

v∈V wvxv. We want to find
a cover with minimum weight. In their paper, Guha et al. [9] give a primal-dual 2-approximation
for the problem which runs in O(m + n log n) time. An LP rounding algorithm achieving the same
approximation factor was later developed by Gandhi et al. [8].

Allowing any s edges to be left unassigned we get a new problem: the partial capacitated

vertex cover problem. Thus we bring together two generalization of the original vertex cover
problem that have been studied separately. Using the primal-dual algorithm of [9] for capacitated
vertex cover coupled with our method we show a 2-approximation for the partial version.

For vertex cover and partial vertex cover, the best known approximation factor for general graphs
is 2− o(1) [3, 10, 11, 16]. However, the best constant factor remains 2. Some of the algorithms
[6, 2, 12] that achieve a ratio of 2 rank among the first approximation algorithms and can be
interpreted using the primal-dual method where a maximal dual solution is found and the cost of
the cover is charged to the dual variables. It is interesting to see how far the same primal-dual
method can be taken to tackle a more general version of the original problem.

Finally we mention that the techniques used in this paper are not restricted to vertex-cover-
like problems. For instance, the primal-dual algorithm of Jain and Vazirani [15] for the facility

location problem can be used in conjunction with our method to design a faster approximation
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algorithm for the partial version of the problem, which was studied by Charikar et al. [5].

2 LP Formulation

Let us describe an integer linear program formulation for the partial vertex cover problem.
Each vertex v ∈ V has associated a variable xv ∈ {0, 1} which indicates if v is picked for the
cover. For every edge e ∈ E one of its endpoints is picked or the edge is left uncovered. A variable
pe ∈ {0, 1} indicates the latter, i.e., pe = 1 means e is left uncovered. The number of uncovered
edges cannot exceed s. The LP relaxation of the IP just described is given below.

min
∑

v∈V wvxv

pe + xu + xv ≥ 1 ∀ e = {u, v} ∈ E
∑

e∈E pe≤ s
xv, pe≥ 0 ∀ e ∈ E, v ∈ V

(LPpvc)

As it stands, LPpvc exhibits an unbounded integrality gap. Consider the following example: a
star where the center node has degree d, all leaves have unit weight while the center node has weight
10. Suppose s = d − 2, that is, we must cover two edges. The optimal integral solution picks two
leaves, thus having a total cost of 2. On the other hand, a fractional solution can pick 2/d of the
center node. Every edge is covered by this amount which adds up to 2. The cost of the fractional
solution is 20/d. Choose d big enough to make the cost as small as desired.

Fortunately, the integrality gap can be narrowed provided we know what is the most expensive
vertex in the optimal solution. Let OPT be the optimal solution; we will also use OPT to denote
the cost of the optimal solution. Suppose we knew that h ∈ V is the most expensive vertex in
OPT. We modify the LP formulation as follows: our solution must pick h and is not allowed to use
vertices more expensive than h, the latter can be achieved by setting their weight to ∞. While this
change does not increase the cost of the integral optimal solution, it does narrow the integrality
gap. For example, in the above star example setting the weight of the center to ∞ effectively
closes the integrality gap. Gandhi et al. [7] showed how to use the above modification to develop a
primal-dual 2-approximation algorithm. Since we do not know the most expensive vertex in OPT,
we must guess. Their procedure, which takes O(n log n + m) time, is run on every choice of h ∈ V ,
and the cheapest cover produced is returned. Therefore, their algorithm runs in O(n(n log n + m))
time.

Our approach is along these lines, but instead of doing exhaustive guessing we run our algorithm
just once and make different guesses along the way. One may say that the algorithm makes educated
guesses. This allows us to bring down the running time.

Theorem 1. There is a 2-approximation algorithm for the partial vertex cover problem which
runs in O(n log n + m) time.

In the next section we describe our algorithm and prove the above theorem.
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3 Primal-Dual algorithm

The dual program for LPpvc is given below. By δ(v) we refer to the edges incident to vertex v.

max
∑

e∈E ye − sz
∑

e∈δ(v) ye≤ wv ∀ v ∈ V

ye≤ z ∀ e ∈ E
ye, z≥ 0 ∀ e ∈ E

(DLpvc)

Initially all dual variables are set to 0, and all edges are unassigned. The algorithm works
in iterations, each consisting of a pruning step followed by a dual update step. As the algorithm
progresses we build a set C ⊆ V , which is initially empty. Along the way we may disallow some
vertices; we keep track of these with the set R, which also starts off empty.

In the pruning step we check, for every vertex v ∈ V \ {C ∪R }, if C + v is a feasible cover. If
that is the case, we guess C + v as a candidate cover, and disallow vertex v: set wv ←∞ and add
v to R. Notice that multiple vertices may be disallowed in a single pruning step.

Let E(R) be the edges with both endpoints in R. If |E(R)| > s we stop as there is no hope of
finding a cover anymore since V \ R is not feasible. At this point we return the candidate cover
with minimum weight.

In the dual update step we uniformly raise z and the ye variables of unassigned edges until some
vertex u becomes tight, i.e., its dual constraint is met with equality. Notice that once disallowed,
a vertex can never become tight since wv = ∞ for all v ∈ R. Hence, u ∈ V \ R. If multiple
vertices become tight at the same time then arbitrarily pick one to process. Vertex u is added to
C, unassigned edges in δ(u) are assigned to u and their dual variables are frozen. After processing
u we proceed to the next iteration. In each dual update step only one vertex is processed, even if
multiple tight vertices are available. This ensures that adding u to C does not make C feasible,
otherwise u would have been disallowed in the previous pruning step.

The algorithm terminates when |E(R)| > s, at which point we know OPT must use at least one
vertex in R. Let h be the first vertex in OPT to be disallowed, and C the set at the moment h was
pruned. By definition C +h is a feasible solution; suppose its cost, w(C +h), is at most twice OPT.
Since the algorithm returns a candidate cover with minimum weight, we achieve an approximation
ratio of 2. It all boils down to proving the following lemma.

Lemma 1. Let h be the first vertex in OPT to be disallowed. Also, let R and C be the sets
constructed by the algorithm right before h was disallowed. Then w(C + h) ≤ 2 OPT.

Proof. We start off by strengthening the LP formulation. Let w′
u = wu for u /∈ R and w′

u = +∞ for
u ∈ R. Since h ∈ OPT and R ∩OPT = ∅, the following is a valid LP relaxation for our problem.

min
∑

v∈V w′
vxv

pe + xu + xv ≥ 1 ∀ e = {u, v} ∈ E
∑

e∈E pe≤ s
xh≥ 1

xu, pe≥ 0 ∀ e ∈ E, v ∈ V

(LP′
pvc)

4



The dual of LP′
pvc is given below.

max
∑

e∈E ye − sz + γ
∑

e∈δ(v) ye≤ w′
v ∀ v ∈ V − h

∑

e∈δ(h) ye + γ≤ w′
h

ye≤ z ∀ e ∈ E
ye, z, γ≥ 0 ∀ e ∈ E

(DL′
pvc)

Let (y, z) be the value of the dual variables just before h was disallowed. Let γ = w′
h−
∑

e∈δ(h) ye.

The solution (y, z, γ) is feasible for DL′
pvc. Thus, by weak duality, OPT ≤

∑

e∈E ye − sz + γ.
Let r be the vertex added to C just before h was disallowed. (If there is no such vertex, i.e.,

C = ∅, then the cover {h} is optimal.) Let f be the number of unassigned edges just before r
became tight. Among these f edges, suppose tr were incident on r and th were incident on h.

Every vertex v ∈ C is tight (wv =
∑

e∈δv ye), thus

w(C + h) =





∑

v∈C

∑

e∈δ(v)

ye



+
∑

e∈δ(h)

ye + γ,

≤ 2

(

∑

e∈E

ye − fz

)

+ (tr + th)z + γ.

The second line follows because edges assigned before r became tight are considered at most
twice in the first line. The remaining edges have ye = z and there are tr + th of them.

Now consider the pruning step right before r became tight. Vertex r was not disallowed then
because f − tr > s. Similarly f − th > s. Thus tr + th ≤ 2 (f − s). It follows that

w(C + h) ≤ 2

(

∑

e∈E

ye − sz

)

+ γ ≤ 2 OPT.

For the implementation we keep two priority queues for the vertices. We refer to the value of
z as the current time in the execution of the algorithm. The first queue uses the key k1(u), which
denotes the time at which vertex u will become tight; initially k1(u) = wu

|δ(u)| . The second queue uses

the key k2(u), which denotes the number of unassigned edges incident to u; initially k2(u) = |δ(u)|.
Let g be the number of unassigned edges; initially g = m. In the pruning step we fetch a vertex

v with maximum k2 value. If g − k2(v) > s proceed to the dual-update step. Otherwise, disallow v
by removing v from both queues and adding v to R. Repeat until |E(R)| > s, or g − k2(v) > s.

In the dual update step we fetch a vertex v with minimum k1 value. Set g ← g − k2(v), add v
to C and remove v from both queues. For every neighbor u /∈ C ∪ R, if k1(u) = 1 remove u from

both queues. Otherwise increase k1(u) to z + (k1(u)− z) k2(u)
k2(u)−1 and decrease k2(u) to k2(u)− 1.

In order to deal with the guessing we store C as a sorted list, adding vertices at the end. Also
we keep two variables h and b. When a vertex v is disallowed we check if the candidate cover C + v
is cheaper than the current best candidate cover. If that is the case, set h← v and b← |C|. At the
end of the algorithm the cover returned is made up of h and the first b elements of C.

5



The running time is dominated by the priority queue operations. At most 2n remove and 2m
modify key operations are performed, which using Fibonacci heaps takes O(n log n+m) time. This
finishes the proof of Theorem 1.

4 Generalization

Our technique can be used to solve a more general version of the vertex cover problem. In the
partial capacitated vertex cover problem every vertex u ∈ V has a capacity ku and a weight
wu. A single copy of u can cover at most ku edges incident to it, the number of copies picked is
given by xu ∈ N0. Every edge e = {u, v} ∈ E is either left uncovered (pe = 1) or is assigned to one
of its endpoints, variables yeu and yev indicate the latter. The number of edges assigned to a vertex
u cannot exceed kuxu, while the ones left unassigned cannot be more than s. The LP relaxation of
the program just described is given below. The additional constraint xv ≥ yev is needed to fix the
integrality gap (c.f. [9]).

min
∑

v∈V wvxv

pe + yeu + yev ≥ 1 ∀ e = {u, v} ∈ E
∑

e∈δ(v) yev ≤ kvxv ∀ v ∈ V

xv ≥ yev ∀ v ∈ e ∈ E
∑

e∈E pe≤ s
pe, yev, xv ≥ 0 ∀ v ∈ e ∈ E

(LPpcvc)

For the sake of completeness we describe how to, given an integral feasible cover x, set the y and
p variables. This an assignment problem that can be solved using max flow. Consider a network
with two layers, a source, and a sink. In the first layer there is a node for every e ∈ E; in the second
layer there is a node for every v ∈ V plus a dummy node that represents the option of leaving an
edge uncovered. Every e is connected with unit-capacity edges to the source, its two endpoints and
the dummy node. Every node v is connected with an edge with capacity kvxv to the sink. Finally,
the dummy node is connected to the sink using an edge with capacity s. An integral flow shipping
m units of flow from the source to the sink corresponds to a valid edge assignment for x and vice
versa.

Our algorithm, however, does not use this approach, rather, m − s edges are assigned to one
of their endpoints; then as many copies of each vertex as necessary are chosen to cover the edges
assigned to it. The algorithm works in iterations, each having a pruning step followed by a dual
update step. For the latter we follow the algorithm in [9] which is described here for completeness.
The dual program of LPpcvc is given below.

max
∑

e∈E αe − sz

kvqv +
∑

e∈δ(v) lev ≤ wv ∀ v ∈ V

αe≤ qv + lev ∀ v ∈ e ∈ E
αe≤ z ∀ e ∈ E

qv, lev, αe, z≥ 0 ∀ v ∈ e ∈ E

(DLpcvc)
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Initially all variables are set to 0 and all edges are unassigned. At the beginning, vertex u is said
to be high degree if more than ku unassigned edges are incident to u, otherwise u is low degree. As
we will see a vertex u may start off as high degree and later become low degree as adjacent edges
get assigned to its neighbors. For such u we define Lu to be the set of unassigned edges incident
to u just after u becomes low degree. If u is low degree from the beginning, i.e., deg(u) ≤ ku, we
define Lu = δ(u).

In the pruning step when processing a vertex v ∈ V \ {C ∪ R}, although in principle we are
allowed to pick multiple copies of it, we check if adding just one copy of v to the current solution
makes it feasible. If that is the case, guess the current solution plus v and then disallow v: add it
to R and set wv ←∞.

In the dual update step we uniformly raise z and αe for all unassigned edges. Because of the
constraint αe ≤ qv + lev one of the terms on the right hand side must be raised by the same amount.
Which variable is increased depends on the nature of v: If v is high degree we raise qv, otherwise we
raise lev. When some vertex u becomes tight we add it to C and open it: If u is high degree we assign
to it all the unassigned edges in δ(u), otherwise u is low degree and all edges in Lu are assigned to
it. Notice that in the later case some of the edges in Lu might have already been assigned. This
means that some of the edges originally assigned to a high degree vertex when it was opened may
later be taken away by the opening of low degree neighbors. Therefore the number of copies of a
vertex that is needed can decrease over time after it is opened. In what follows, when we talk about
the current solution we mean the current assignment of edges.

Suppose that in the dual update step the algorithm opens vertex u. If u is low degree, its
opening cannot make the solution feasible, otherwise it would have been disallowed in the previous
pruning step. On the other hand, if u is high degree, opening u may make the solution feasible,
since we can use multiple copies of u. In the latter case we say the algorithm ends prematurely : we
assign to u just enough edges to make the solution feasible (i.e., exactly s edges are left unassigned)
and we return the best solution among the candidate covers and the current solution. If on the
other hand this does not happen and R grows to the point where |E(R)| > s we stop and return
the best candidate cover. The pseudo-code for the algorithm is given in Appendix A.

Let us first consider the case where the algorithm ends prematurely, we will show that we can
construct a solution with cost at most 2

(
∑

e∈E αe − sz
)

. Let ϕ be the edge assignment when the
algorithm ended prematurely, where ϕ(v) denotes the set of edges assigned to vertex v. Constructing
the solution is simple: we pick enough copies of every vertex to cover the edges assigned to it, that

is, for every u ∈ V we chose
⌈

|ϕ(u)|
ku

⌉

copies of u.

Let u be one of the vertices opened. Furthermore suppose u was low degree when it was opened,
this means only one copy is needed. If u started off as low degree then wu =

∑

e∈Lu
leu =

∑

e∈Lu
αe

as qu = 0. On the other hand if u became low degree afterwards then |Lu| = ku and only edges in
Lu have nonzero leu. Thus,

wu = quku +
∑

e∈Lu

leu =
∑

e∈Lu

(qu + leu) =
∑

e∈Lu

αe.

In both cases we can pay for u by charging once the edges in Lu.
Now let us consider the case when u is high degree. By definition more than ku edges were

assigned to u when it became tight. Note that some of these edges may later be taken away by
low degree neighbors. There are two cases to consider. If |ϕ(u)| < ku we only need one copy of
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u, charging once the edges originally assigned to u (which are more than ku and have αe = qu) is

enough to pay for wu = kuqu. Otherwise
⌈

|ϕ(u)|
ku

⌉

copies of u are needed. Unfortunately our budget

of
∑

e∈ϕ(u) αe = |ϕ(u)|qu = |ϕ(u)|
ku

wu is only enough to pay for the first
⌊

|ϕ(u)|
ku

⌋

copies. The key

observation is that edges in ϕ(u) will not be charged from the other side, therefore charging any ku

edges in ϕ(u) one more time is enough to pay for the extra copy needed.
How many times can a single edge be charged? At most twice, either from a single (high degree)

endpoint or once from each endpoint. We are leaving s edges uncharged with αe = z, therefore the
solution can be paid with 2(

∑

e∈E αe − sz).
Before ending prematurely the algorithm may have disallowed some vertices. If none of them

is used by OPT, strengthening the LP by setting their weight to ∞ does not increase the cost of
the integral optimal solution. Therefore the cost of the dual solution is a lower bound on OPT.
It follows from the above analysis that the cover found has cost at most 2 OPT. Otherwise OPT
uses at least one vertex in R. Notice that if the algorithm terminates because |E(R)| > s we also
get that R ∩ OPT 6= ∅. In either case, let h ∈ R ∩ OPT be such that vertices disallowed by the
algorithm before h do not belong to OPT.

Let R and C be the sets constructed by the algorithm just before h was disallowed. We proceed
as before by strengthening the LP relaxation. Let w′

u = wu for u /∈ R and w′
u = +∞ for u ∈ R.

Since h ∈ OPT and R ∩OPT = ∅, the following is a valid LP relaxation for our problem.

min
∑

v∈V w′
vxv

pe + yeu + yev ≥ 1 ∀ e = {u, v} ∈ E
∑

e∈δ(v) yev ≤ kvxv ∀ v ∈ V

xv ≥ yev ∀ v ∈ e ∈ E
∑

e∈E pe≤ s
xh≥ 1

pe, yev, xv ≥ 0 ∀ v ∈ e ∈ E

(LP′
pcvc)

The dual of LP′
pcvc is given below.

max
∑

e∈E αe − sz + γ

kvqv +
∑

e∈δ(v) lev ≤ w′
v ∀ v ∈ V − h

khqh +
∑

e∈δ(h) leh + γ≤ w′
h

αe≤ qv + lev ∀ v ∈ e ∈ E
αe≤ z ∀ e ∈ E

qv, lev, αe, z≥ 0 ∀ v ∈ e ∈ E

(DL′
pcvc)

Let (α, q, l, z) be the dual solution constructed by the algorithm just before h was disallowed.

Let γ = w′
h −

(

khqh +
∑

e∈δ(h) leh

)

. The solution (α, q, l, z, γ) is a feasible solution for DL′
pcvc.

Hence, its cost offers a lower bound on OPT.
Now consider the edge assignment when h was pruned. Before constructing the cover we need to

modify the assignment. If h is low degree, we assign to h the edges in Lh, otherwise we assign to it
any kh unassigned edges in δ(h). This may cause strictly less than s edges to be left unassigned. To
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fix this we take away from r, the last vertex to become tight, enough edges as to leave exactly s edges
unassigned. (If there is no such vertex, i.e., C = ∅, then the cover {h} is optimal.) This can always
be done because h was not disallowed before r was opened. Let ϕ be the edge assignment after
this modification. Now we build the cover by picking as many copies of each vertex as necessary to
cover the edges assigned to it.

Suppose that just before r became tight there were f unassigned edges. Among these f edges,
suppose tr were incident on r and th were incident on h. There are two cases to consider depending
on the number of copies of r needed.

Suppose a single copy of r is needed. This can happen because r was low degree, or because
r was high degree but later some edges were taken away from r in order to leave exactly s edges
uncovered. In either case, using the charging scheme described above, we get:

∑

u∈V

⌈

|ϕ(u)|

ku

⌉

wu ≤ 2

(

∑

e∈E

ye − fz

)

+
(

tr + min{th, kh}
)

z + γ,

≤ 2

(

∑

e∈E

ye − sz

)

+ γ.

The second inequality follows because f − tr > s and f −min{th, kh} > s, which in turn hold
because the algorithm did not end prematurely when r was opened and h was not disallowed in the
pruning step before r became tight.

Now suppose r was high degree and multiple copies of r were chosen. Then

∑

u∈V

⌈

|ϕ(u)|

ku

⌉

wu ≤ 2

(

∑

e∈E

ye − fz

)

+
(

2|ϕ(r)|+ min{th, kh}
)

z + γ,

≤ 2

(

∑

e∈E

ye − sz

)

+ γ.

The second inequality follows because after the reassignment f − s = |ϕ(r)|+ min{th, kh}.
In both cases we can pay for the cover with twice the cost of the dual solution, thus, there is a

candidate cover that is 2 approximate. Since we chose a candidate cover with minimum weight the
algorithm is a 2-approximation.

The implementation is similar to that of the algorithm for partial vertex cover described in
Section 3. We keep two priority queues for the vertices. The first queue is used during the dual
update to fetch the next vertex to become tight. The second priority queue is used during the
pruning step to fetch a vertex with most unassigned edges incident on.

When a certain vertex v is disallowed we check if the cost of the candidate cover induced by
v and the current edge assignment is cheaper than the current best candidate cover, if that is the
case we remember v. In order to do this efficiently we need to keep track of the cost of the current
edge assignment. Note that when a vertex u is opened the cost increases because of the additional
copies of u that are needed. However, if u is low degree it is possible that the number of copies of
a high degree neighbor in Lu may decrease. This is easy to check by scanning the edges in Lu.

Suppose h was the vertex that induced the best candidate cover when it was disallowed. To
recover the actual solution the algorithm is run a second time. When the algorithm tries to disallow
h we stop and return the cover built at this point.
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Theorem 2. There is a 2-approximation algorithm for the partial capacitated vertex cover

problem which runs in O(n log n + m) time.

5 Conclusion

We have developed algorithms for the partial version of vertex cover and capacitated vertex cover.
Our pruning/dual update technique is quite general and may be applied to other covering problems
where a primal-dual already exist for the full version of the problem, i.e., s = 0.

Acknowledgment: Thanks to Samir Khuller for suggesting developing an algorithm for partial
vertex cover that does not use exhaustive guessing and for many useful comments on earlier versions
of the paper. Also thanks to the anonymous referees whose comments helped improve the exposition
of the paper.
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A Approximation Algorithm for Partial Capacitated Vertex Cover

partial-capacitated-vertex-cover(G, w, s)

R, C ← ∅
ye, z ← 0
for u ∈ V [G]

δ′(u) = δ(u) [unassigned edges incident to u]
ϕ(u) = ∅ [edges assigned to u]
if |δ(u)| ≤ ku [u is low degree]

Lu ← δ(u)
do

pruning-step

if |E(R)| > s
return best candidate cover

dual-update-step

if dual update ended prematurely

if
∑

u

⌈

|ϕ(u)|
ku

⌉

wu < cost of best candidate cover

return ϕ
else

return best candidate cover

pruning-step

let g be the number of edges that remain unassigned
let v be a vertex maximizing min{kv, |δ

′(v)|}
while g −min{kv, |δ

′(v)|} ≤ s
ϕv ← ϕ
if |δ′(v)| > kv

ϕv(v)← any kv edges in δ′(v)
else

for (v, x) ∈ Lv

add (v, x) to ϕv(v)
if (v, x) ∈ ϕv(x)

remove (v, x) from ϕv(x)
if C 6= ∅

let r be the last vertex that became tight
remove edges from ϕv(r) until exactly s edges remain unassigned

let ϕv be a candidate cover
wv ←∞
add v to R
let v be a vertex maximizing min{kv, |δ

′(v)|}
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dual-update-step

let v be a vertex minimizing ǫv =

{

wv−zkv

kv
if v is high degree

wv−
P

e∈Lv
ye

|δ′(v))| if v is low degree
z ← z + ǫv

for all unassigned edges e
ye ← ye + ǫv

add v to C
if |δ′(v)| > kv [v is high degree]

for all e = (v, u) ∈ δ′(v)
add e to ϕ(v)
remove e from δ′(u) and δ′(v)
if |δ′(u)| = ku [u became low degree]

Lu ← δ′(u)
if exactly s edges remain unassigned

end prematurely
else [v is low degree]

for all e = (v, u) ∈ Lv

add e to ϕ(v).
if e ∈ ϕ(u)

remove e from ϕ(u) [may reduce the number of copies of u needed]
if e ∈ δ′(u)

remove e from δ′(u) and δ′(v)
if |δ′(u)| = ku [u became low degree]

Lu ← δ′(u)
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