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Abstract. The game of SET is a popular card game in which the ob-
jective is to form Sets using cards from a special deck. In this paper we
study single- and multi-round variations of this game from the compu-
tational complexity point of view and establish interesting connections
with other classical computational problems.
Specifically, we first show that a natural generalization of the problem
of finding a single Set, parameterized by the size of the sought Set is W-
hard; our reduction applies also to a natural parameterization of Per-
fect Multi-Dimensional Matching, a result which may be of inde-
pendent interest. Second, we observe that a version of the game where
one seeks to find the largest possible number of disjoint Sets from a
given set of cards is a special case of 3-Set Packing; we establish that
this restriction remains NP-complete. Similarly, the version where one
seeks to find the smallest number of disjoint Sets that overlap all possi-
ble Sets is shown to be NP-complete, through a close connection to the
Independent Edge Dominating Set problem. Finally, we study a 2-
player version of the game, for which we show a close connection to Arc
Kayles, as well as fixed-parameter tractability when parameterized by
the number of rounds played.

1 Introduction

In this paper, we analyze the computational complexity of some varia-
tions of the game of SET and its interesting relations with other classical
problems, like Perfect Multi-Dimensional Matching, Set Pack-
ing, and Independent Edge Dominating Set.

The game of SET is a card game in which players seek to form Sets
of cards from a special deck. Each card from this deck has a picture with
4 attributes (shape, color, number, shading), and each attribute can take
one of 3 values (for example the shape can be oval, squiggle, or diamond,
the color can be blue, green, or purple, etc). To create a Set3, the player

3 The first letter of Set is capitalized to avoid a mix-up with the notion of mathematical
set
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needs to identify 3 cards in which, for each attribute independently, either
all cards agree on the value, or they constitute a rainbow of all possible
values. In a single round of the normal play, 12 cards are dealt and the
players seek (simultaneously) a Set. The first player to find a Set wins
the 3 cards constituting it. Then 3 new cards are dealt in the old ones’
places and the game continues with the next round. For more information
regarding the game and its rules as well as for other variations see the
official website of the game http://www.setgame.com/set/index.html.

The game of SET has gained remarkable attention and popularity
(especially among mathematicians) as well as many awards. The game
has been the subject of both educational and technical research. A broad
set of educational activities has been suggested, a collection of which can
be found in [11]. Furthermore, the game has been studied extensively from
a more technical mathematical point of view, considering questions like
“what is the maximum number of cards with n attributes and 3 values
that can be laid such that no Sets are formed” [5], or “for fixed n, how
many non-isomorphic collections of n cards are there” [4]). In [15], many
other similar questions are posed. In addition to the game’s popularity,
one motivation for this intense study is that the problem has a very
natural alternative mathematical formulation: if one describes the cards
as four-dimensional vectors over the set {0, 1, 2}, then a Set is exactly a
collection of three collinear points, that is, three points whose vectors add
up to 0( mod 3). Nevertheless, the first and - to the best of our knowledge -
only attempt to consider the game’s computational complexity was made
by Chaudhuri et al [2] in 2003, who showed that a generalization of the
game is NP-complete. Our focus on this paper is to continue and refine
this work by studying further aspects of the computational complexity of
SET.

In order to study a game from the viewpoint of computational com-
plexity theory, one needs to define a natural generalization of the game in
question (as the original constant size game always has constant time and
space complexity). In a round of SET, there are 3 parameters to consider:
the number of cards m, the number of attributes n and the number of
values k (in the original game m = 12, n = 4 and k = 3). A subset of
k cards will be considered to be a Set if for all attributes, values either
all agree or all differ. Of course these three parameters are not totally
independent as the number of cards m is upper-bounded by kn. In any
multi-round version of the game, an extra parameter r being the number
or rounds is added.

http://www.setgame.com/set/index.html


Summary of results. We first talk about a single-round version of
SET. This one-round version generalizes Perfect Multi-Dimensional
Matching as was first observed in [2]. It is easy to see that the prob-
lem parameterized by the number of values k is in XP (by the trivial
algorithm that enumerates all size-k sets of cards and checking whether
any of them constitutes a Set). We prove that this parameterized version
of the problem is W-hard. Our W-hardness proof applies to Perfect
Multi-Dimensional Matching as well, proving that Perfect Multi-
Dimensional Matching parameterized by the size of the dimensions k
(while the number of dimensions n is unbounded) is W[1]-hard. This
result may be of independent interest, as this is a natural parameteriza-
tion of a classic problem that has not been considered before. The only
relevant parameterized result known about this problem is that Maxi-
mum Multi-Dimensional Matching parameterized by the size of the
matching and the number of dimensions is FPT (first established in [6]
and further improved in [3].

Next, we focus our attention to the case where the number of values is
3. As was suggested, there is a polynomial time algorithm to find whether
there exists at least one Set, in other words to play just one round. The
complexity stays the same even if we consider the question of enumerating
all Sets. This generalizes the daily puzzles found either on the official
website of SET or in the New York Times. In these puzzles we are given
m cards and need to find the maximum number of Sets assuming that we
don’t remove any cards from the table after finding a Set.

It becomes interesting to ask the same question for a multi-round
game, where cards are gradually removed. This corresponds to the CO-
OP version of the game, where players have to cooperate in order to find
the maximum number of available Sets given that cards of found Sets are
removed from the table. Another interesting variation is the one where we
are looking for the minimum number of Sets that once picked destroy all
existing Sets. Both problems can be seen as special cases of more general
packing and covering problems. In the maximization version, one is look-
ing for a maximum 3-Set Packing, while in the minimization version
one is looking for a minimum Independent Edge Dominating Set in
a 3-uniform hypergraph. We show that both problems remain NP-Hard
even on instances that correspond to the SET game. From the param-
eterized point of view, if one considers as the parameter the number of
rounds r to be played, a natural parameterization of the former prob-
lem asking whether there are at least r mutually disjoint Sets is Fixed
Parameter Tractable, following from the results of Chen et al. [3]. We es-

http://www.setgame.com/set/index.html
http://www.setgame.com/set/index.html
http://www.nytimes.com/ref/crosswords/setpuzzle.html


tablish that the natural parameterized version of the latter problem (find
at most r Sets to destroy all Sets) is also FPT, through a connection with
the related Independent Edge Dominating Set problem on graphs.

Finally, we consider a two-player version of the r-round game, which
can be seen as a restriction of the game Arc Kayles in 3-uniform hy-
pergraphs (where hyperedges should be valid Sets). The complexity of
Arc Kayles is currently unknown even on graphs and it has been a
long-standing open question since the PSPACE-Completeness of its sib-
ling problem Node Kayles was established in [13]. We prove that this
multi-round 2-player version of SET is at least as hard as Arc Kayles.
Nevertheless, we prove that deciding whether the first player has a win-
ning strategy in r moves in 2-player SET is FPT parameterized by r. This
implies the same result for Arc Kayles on graphs.

The paper is divided as follows: In section 2 we present the W-hardness
of the single-round version of SET. In section 3 we analyze the above-
mentioned multi-round variations with k = 3. In section 4 we analyze
the natural turn-based 2-player version. Last, in section 5 we give some
conclusions and open problems.

2 W-hardness of k-Value 1-Set and Perfect
Multi-Dimensional Matching

In this section, we talk about a single-round generalization of the game
of SET. We are dealt m cards, each with n attributes that can take
one of k values and we need to find a set of size k. This is the main
problem considered by Chaudhuri et al. in [2]. Their main insight is that
this problem can be seen as a hypergraph problem. Specifically, one may
construct a hypergraph on n · k vertices, each representing an attribute-
value pair. Now, cards can be represented as hyperedges, by including
in each hyperedge the k values that describe the corresponding card’s
attributes. It is not hard to see that a perfect matching in this n-partite
hypergraph corresponds to a Set in the original instance. On the other
hand, some Sets do not correspond to perfect matchings, because all cards
may share the same value for some attributes. Nevertheless, Chaudhuri
et al. have established that the two problems have the same complexity
and finding a Set is essentially algorithmically equivalent to find a perfect
matching in this hypergraph.

Here we will exploit this connection between the two problems to
analyze the complexity of finding a Set with respect to the three relevant
parameters m,n, and k. If k is unbounded, finding a Set was shown to



be NP-hard in [2] even for just 3 attributes. If the cards have only 2
attributes, the game is in P. On the other hand, if n is unbounded but the
number of values k is considered as a parameter the problem is trivially in
XP. Here we will show that the trivial algorithm cannot be improved to
an FPT algorithm, by proving that the problem is W[1]-hard. The first
step of our reduction is to show that the relevant parameterization of
Perfect Multi-Dimensional Matching is W[1]-hard, a result that
may be of independent interest.

Theorem 1. Perfect Multi-Dimensional Matching parameterized
by the dimension size is W[1]-hard.

Proof. We present a reduction from k-Multicolored Clique (proven
to be W[1]-hard in [7]).

Given an instance of k-Multicolored Clique, in other words a
k−partite graph G(V,E) where each part has size n, we construct an
instance of Perfect Multi-Dimensional Matching, a multigraph
G′(V ′, E′) with nk(k − 1) dimensions where each dimension has k +

(
k
2

)
different values, such that if G has a clique of size k then G′ has a multi-
dimensional perfect matching.

For each ordered pair (Vi, Vj) with Vi, Vj , i 6= j being parts of V , we
add n dimensions which we group together in a group i− ij. Each of the
n dimensions in each group i− ij of graph G′ corresponds to a different
vertex in part Vi of graph G. Each dimension will have k +

(
k
2

)
different

possible values, one value corresponding to each part Vi and one value
corresponding to each pair of parts (Vi, Vj), i < j.

Fig. 1. The vertex-multiedge of
G′ that corresponds to vertex v13
of part V1 in G.

Fig. 2. The edge-multiedge of G′

that corresponds to the edge eij
of G.

Furthermore, for each vertex vij in the original graph (jth vertex of
part Vi) we create a multiedge as follows (see figure 1): it will contain the



vertices labeled with i for all dimensions but the jth dimension of each
group i− ki, where k 6= i. For these dimensions we ’ll include the vertex
labeled with kj. We call these vertex-multiedges.

Last, for each edge eij ∈ E that connects the ath vertex of part Vi with
the bth vertex of part Vj in the original graph, we create a multiedge as
follows (see figure 2): we add all vertices labeled with ij for all dimensions
except for the ath dimension in the group i− ij that take the vertex with
label i and the bth dimension in group j− ij that we take the vertex with
label j. We call these edge-multiedges.

Notice that the above construction is polynomial in the size of the
input and the parameter of k-Multicolored Clique. Also, the dimen-
sion size in the constructed instance of Perfect Multi-Dimensional
Matching k +

(
k
2

)
is quadratic in the parameter k of k-Multicolored

Clique.

Fig. 3. Vertices of groups i − ij and j − ij that were not covered by
the vertex-multiedges of G′ that correspond to vertices vici or vjcj of G
are covered by the edge-multiedge of G′ that corresponds to edge eij =
(vici , vjcj ) and vice versa.

Now we prove that if G has a clique of size k then G′ has a perfect
multidimensional matching and vice versa. Suppose that G has a clique
of size k. In other words, there should be a tuple (v1c1 , v2c2 , . . . vncn), with
vici ∈ Vi, where all vertices in the tuple are connected with each other.
We select in the matching the k vertex-multiedges of G′ that correspond
to the vertices in the clique of G and the

(
k
2

)
edge-multiedges of G′ that

correspond to edges of G that connect vertices in the clique. This selection
is a perfect matching: each vertex-multiedge or edge-multiedge selects
all vertices with labels that correspond to the vertex or edge that they
represent, except for k−1 vertices for each vertex-multiedge and 2 vertices
for each edge-multiedge as it is described above. Also, the edge-multiedge



of G′ that corresponds to edge eij = (vici , vjcj ) of G covers those two
vertices that the vertex-multiedges that correspond to vici and vjcj left
uncovered, and vice versa (see figure 3).

On the other hand, if G′ has a perfect matching, then this matching
contains exactly one vertex-multiedge and exactly one edge-multiedge
of each value (otherwise there would be uncovered vertices or vertices
covered twice by the matching). We select all vertices ofG that correspond
to a vertex-multiedge in the matching. Now, all these vertices that we
picked should be pairwise connected in G, because the edge-multiedges
in the matching should be covering those vertices in G′ that the vertex-
multiedges didn’t cover, which correspond to the vertices in the clique.

For a complete example of the construction see figure 4. ut

Fig. 4. A complete example for W-hardness of Section 2.

Corollary 1. The game of Set parameterized by the number of values (or
else the size of the Sets) is W[1]-hard.

Proof. The “if” part of the above reduction also holds for the game of
Set: if G′ has a multidimensional perfect matching it also has a Set. For
the “only if” part, notice that if G′ has a Set then this Set is also a
multidimensional perfect matching since no vertex-multiedge can pass
through a value that belongs to another vertex-multiedge. ut

3 Multi-round variations of SET

In this and the next section we talk about multi-round variations of SET
where the number of values (or in other words the size of the Sets) is 3.
In this case, each card (vertex of the hypergraph) is described by a vector
in Fn

3 . Note that, three cards form a Set if and only if their corresponding
vectors add up to the all-0 vector. It is also easy to observe that every
pair of cards can have up to one card that forms a Set with the other two.
This property will prove useful later.



We will once again use a hypergraph formulation, though different
from the one in the previous section. Specifically, we consider the 3-
uniform hypergraph formed if we construct a vertex for each dealt card
and a hyperedge (that is, a set of size 3) for each Set. It is clear that given
a SET instance, one can in polynomial time construct this hypergraph.

We will first talk about a maximization variation: given a set of cards
we ask the question whether there exist at least r Sets that we can pick up
before leaving no Sets on the table. We call this problem Max 3-Value r-
Set. Observe that this problem is a special case of 3-Set Packing, which
is a known NP-hard problem. We thus need to show that the problem
remains NP-hard when restricted to instances realizable by SET cards.
This is established in Theorem 2.

Then, we turn our attention to a minimization version: given a set
of cards, is it possible by removing at most r Sets (3r cards) to elimi-
nate all potential Sets? We call this problem Min 3-Value r-Set. This
problem is a special case of Independent Edge Dominating Set in
3-uniform hypergraphs. We show its NP-hardness even when restricted
to hypergraphs realizable by SET cards. Then, we prove that the natu-
ral parameterized version of Independent Edge Dominating Set in
3-uniform hypergraphs with parameter r is FPT, thus proving that the
special case of a parameterization of this version of SET is also FPT.

3.1 NP-Hardness the maximization version

Theorem 2. Max 3-Value r-Set is NP-Hard.

Proof. We design a reduction from 3-SAT. Given a formula φ of 3-SAT we
first create an equivalent formula φ’ where each clause contains at most 3
literals and each variable appears exactly 3 times (two as positive and one
as negative or two as negative and one as positive). Furthermore, any two
clauses of φ’ share at most one variable. A similar construction appears
in [12], but it is also presented below for the sake of completeness.

Lemma 1. Any formula φ of regular 3-SAT can be transformed into an
equivalent formula φ’, where each clause has at most 3 variables and each
variable appears exactly 3 times in φ’ (not all positive or all negative).

Proof. Given a formula φ of regular 3-SAT, we create an equivalent for-
mula φ’ as follows: first, we ensure that each variable appears at least 4
times (if not, we double some of the clauses where this variable appears);
then, for each appearance of each variable v we create a new variable vi



for i = 1, . . . l, where l is the total number of appearances, and clauses
(¬vi ∨ vi+1), (¬vl ∨ v1).

Clearly all variables in φ’ appear exactly 3 times and not all posi-
tive or all negative. Furthermore, φ is satisfiable iff φ’ is satisfiable by an
assignment that sets the same truth value to all variables vi in φ’ corre-
sponding to the same variable v in φ. ut

Let m be the number of clauses of φ’ and n the number of variables.
The main idea of the reduction is as follows: from formula φ’ we

create an instance of Max 3-Value r-Set which consists of variable
gadgets (one corresponding to each variable) and clause gadgets (one
corresponding to each clause). The variable gadget of a variable x contains
five cards: three cards x1, x2 and x3 for each appearance of x in φ’ (x1 and
x2 corresponding to appearances with the same sign and x3 to opposite),
and two more cards: x12 which forms a Set with x1 and x2, and x123 which
forms a Set with x3 and x12. Picking either Set is equivalent to making
an assignment to x (both Sets contain x12, only one Set can be formed
leaving either positive or negative appearances of x unused). The cards
x1, x2, x3 will also appear in the clause gadgets and, intuitively, we will
be able to select a Set from a clause gadget if and only if one of its xi
vertices is free, corresponding to a true literal.

Fig. 5. The variable gadget Fig. 6. The clause gadget

The clause gadget consists of four additional cards: one card per literal
in the clause c1, c2, and c3, and one additional card cm (for clauses of size
2 we do not introduce c3). Furthermore, each card xci corresponding to
the literal in the ith position of a clause c forms a Set with cards ci and
cm. In order to be able to pick this Set (and satisfy c) xci should not have
been picked during the assignment phase.



Observe that, if one sees the new instance as a 3-Set Packing in-
stance, it is not hard to establish that the instance has a solution of size
n+m if and only if φ’ is satisfiable. The bonus point is that this instance
is realizable with Set cards. In what follows we focus our attention to
proving this fact. ut

Each card will be described by a vector in Fm+n+1
3 . The first n+ 1 co-

ordinates constitute the variable part and the last m the clause part. The
variable part is the same for all cards in each variable gadget representing
variable i: it consists of all 0s, except for the ith coordinate which is set
to 1. Similarly, vectors of clause gadgets have the same clause part: again
all 0s, except the (n+ 1 + j)th coordinate is set to 1 for the jth clause.
We have now fully specified the vectors for the xi’s. Let us explain how
the remaining vectors are filled out.

– x12: clause part is equal to the clause part of −x1 − x2, so that x1 +
x2 + x12 = 0m mod 3;

– x123: clause part is equal to clause part of −x3 − x12;
– cm: variable part is equal to variable part of xc1 + xc2 + xc3 , if they

exist. If clause has only two literals, we only use xc1 +xc2 for the first
n coordinates while coordinate n+ 1 is set to 1. The intuition behind
introducing the dummy 1 at position n+ 1 for clauses of size 2 is that
it will be convenient if we always know that the variable part of cm
has three 1’s.

– c1: variable part is equal to variable part of xc1 − xc2 − xc3 (c2, c3 are
formed accordingly). Again, if xc3 does not exist we use xc1 −xc2 and
set coordinate n+ 1 to 2.

For a detailed presentation of the values of the different types of cards
see table 1.

Card Variable Part Clause Part

xi (0, 0, . . . 0, 1, 0, 0 . . . 0) (0, 0, . . . 0, 1, 0, 0 . . . 0)
x12 (0, 0, . . . 0, 1, 0, 0 . . . 0) (0, 0, . . . 0, 2, 0, 0 . . . 0 2, 0 . . . 0)
x123 (0, 0, . . . 0, 1, 0, 0 . . . 0) (0, 1, 0, . . . 0, 2, 0, 0 . . . 0 1, 0 . . . 0)
ci (0, 1, . . . 0, 2, 0, 0 . . . 0 2, 0 . . . 0) (0, 0, . . . 0, 1, 0, 0 . . . 0)
cm (0, 1, . . . 0, 1, 0, 0 . . . 0 1, 0 . . . 0) (0, 0, . . . 0, 1, 0, 0 . . . 0)

Table 1. A synopsis of all possible tuples of the different types of card
values for proof of Theorem 2.



Now, we prove that the only Sets which are formed are indeed the
Sets that we described in the introduction of Section 3.1. To achieve this
we need to prove the following 3 Lemmata:

Lemma 2. Cards of formed Sets share either the same variable part or
the same clause part.

Proof. First, observe that if two vectors agree in either the clause or the
variable part then the third vector should also agree with them. Therefore,
we will only consider Sets that contain a card of type ci or cm, because
in a Set containing only cards from the variable gadgets, their vectors
should agree on the variable part.

Suppose that there exists a Set where the 3 cards share neither their
variable part nor their clause part. Since a card of type ci (or cm) is part
of this Set, then a card of type cm (or ci accordingly) should also be part
of it (each of these two cards has three non-zero values in their variable
part and there is no other way to match them with two other cards from
variable gadgets which have only one non-zero value). So this Set should
contain a card of type ci and a card of type cm.

Since the two cards we have (ci and cm) do not agree on their clause
part, the third card of a Set must have exactly two coordinates set to 2 in
its clause part, and all others to 0. Therefore, it must be of type x12. The
two 2s of card x12 should be aligned with the 1s from ci and c′m, when
c and c′ are different clauses. But for variable parts to agree, non-zero
values in cards ci and c′m should be aligned, which means that clauses
c and c′ should contain identical variables. However that is not possible
from the construction of φ’ where different clauses share no more than
one common variable. ut

Lemma 3. Only two different types of Sets are formed by cards that share
the same variable part and they intersect.

Proof. By construction, there are two different Sets formed within a vari-
able gadget as shown in figure 5. Furthermore, each pair of cards a, b has
a unique third card −(a + b) mod 3 with which they form a Set. Only
possible triplet where cards are pairwise not in participation of existing
Sets are cards x1 (or equivalently x2), x3, and x123 which can’t form a
Set. ut

Lemma 4. Sets of cards that share the same clause part shall contain a
card of type cm.



Proof. Cards of the same clause type are xi, ci and cm. A card of type
ci can’t exist alone with two cards of type xi because its variable part
has three non-zero values and can’t match with two cards where each of
them has only one non-zero value. Trying to put two cards of type ci in
the same Set won’t work either: at least one pair of 2s should be aligned,
which means that the last card should also have a 2 in that position. This
only leaves a third card of type ci as a possibility (no other type has a 2 in
the variable part). The only way three cards of this type could potential
match is if all non-zero values are matched, which would produce three
identical cards. ut

Observe now that if φ’ is satisfiable, then we can select one Set from
each variable gadget (using the corresponding variable’s assignment) and
one Set from each clause gadget (since one of the literals is set to True).
This gives n + m Sets. For the converse direction, observe that, from
Lemmata 3 and 4 it is not possible to select more than one Set from
each gadget. Thus, one can extract a satisfying assignment for φ’ from a
solution of size n+m. ut

3.2 Results on the minimization version

Next, we present yet another multi-round version of SET, Min 3-Value
r-Set. We remind the reader that in this problem a single player is trying
to remove the smallest possible number of Sets so that no more Sets are
left on the table. Each card, as before, has an unbounded number of
attributes and each attribute can take 3 values.

We prove that Min 3-Value r-Set is NP-hard via a simple reduction
from Independent Edge Dominating Set (proven NP-hard in [9]).

Theorem 3. Min 3-Value r-Set is NP-hard.

Proof. Given an instance of Independent Edge Dominating Set (a
graph G(V,E) and a number r), we create an instance of Min 3-Value
r-Set of |V |+ |E| cards with |V | dimensions each, such that if G has an
edge dominating set of size at most r then there exist at most r Sets which
once picked up destroy all other Sets. Again, cards will be represented by

vectors in F|V |
3 .

The construction is as follows: For each vertex i ∈ V we create a card
where all coordinates are 0 except from the value of the ith coordinate
which is equal to 1. Furthermore, for each edge (i, j) ∈ E we create a card
where all coordinates are 0 except from the values of coordinates i and j
which are equal to 2.



Observe that the only Sets formed correspond directly to edges in G.
Picking a Set corresponding to edge (i, j) eliminates the cards correspond-
ing to vertices i, j (together with the card corresponding to edge (i, j)).
This move causes the elimination of any potential Set containing cards
corresponding to vertices i and j. Thus an edge dominating set of size
at most r in G corresponds to an equal number of Sets overlapping all
other Sets. On the other hand the smallest number of Sets that overlap
all other Sets is equal to the minimum edge dominating set. ut

Since the Min 3-Value r-Set problem is hard, it makes sense to
consider its naturally parameterized version: Given an arbitrary set of
cards, do there exist r Sets that overlap all other formed Sets? We show
that a simple FTP algorithm can decide this question. As a matter of
fact, the algorithm works on any 3-uniform hypergraph. Recall that the
similar parameterization of the maximization problem is also known to
be FPT, by relevant results on 3-Set Packing [3].

Theorem 4. Independent Edge Dominating Set in 3-uniform hy-
pergraphs parameterized by the size of the edge dominating set is FPT.

Proof. We give an algorithm that follows the same basic ideas as the
FPT algorithm for Independent Edge Dominating Set given in [8].
We will not worry too much about optimizing the parameter dependence,
instead focusing on establishing fixed-parameter tractability.

Consider the 3-uniform hypergraph formed as follows: we have a vertex
for every given card and a hyperedge of size 3 for each Set of the input
instance. Suppose that there exists a set of r Sets such that removing the
cards they consist of would destroys all Sets. Then, there must exist a
hitting set in this hypergraph of size exactly 3r (since the r removed Sets
cannot overlap).

We will list all hitting sets of size 3r with a simple branching algorithm
as follows: start with an empty hitting set and as long as the size of
the currently selected hitting set has size < 3r find a hyperedge that
is currently not covered. For each non-empty subset of the vertices of
this hyperedge (there are 7 choices) add these vertices to the hitting set
and remove all hyperedges they hit. Recursively continue until either all
hyperedges are hit or the hitting set has size more than 3r. If we have a
hitting set of size exactly 3r add it to the list.

For each hitting set S of size exactly 3r do the following: check if the
hypergraph induced by S has a perfect matching, that is, a set of r disjoint
hyperedges covering all vertices. This can be done in time exponential in



r. If the answer is yes, we have found a set of r Sets that overlaps all
other Sets. If the answer is no for all hitting sets then we can reject. ut

Corollary 2. Min 3-Value r-Set parameterized by the number of Sets
that will be picked is FPT.

Corollary 2 follows directly from Theorem 4.

4 A two player game

In this section, we consider a natural two-player turn-based game that we
call 2P 3-Value Set. Suppose that an arbitrary set of cards is on the
table and two opposing players take turns playing. Each player may select
three cards that form a Set and remove them from play. No additional
cards are dealt. The game goes on until a player is unable to find a Set,
in which case she loses.

Unlike the solitaire games Max 3-Value r-Set and Min 3-Value r-
Set, here players must exercise some strategic thinking: each is trying not
only to maximize the number of Sets she will collect but also to prevent
the opponent from forming a set.

We exploit the ideas developed for the single-player game Min 3-
Value r-Set. Although we will not completely settle the complexity of
the two-player version, the reduction given in Theorem 3 can be used to
establish directly that the two-player version of Set is at least as hard as
Arc Kayles.

Arc Kayles is a two-player game played on an undirected graph.
Two players take turns selecting edges from the graph, under the con-
straint that the edge they pick cannot share a common endpoint with
any previously selected edges. The first player unable to move loses.

Though the complexity of the related version of the problem called
Node Kayles was settled in the ’70s by Schaefer [13], Arc Kayles has
been open ever since. It is not hard to see that, since the game in Arc
Kayles ends essentially when the two players have formed a minimal
independent edge dominating set, we can say the following:

Corollary 3. 2P 3-Value Set is at least as hard as Arc Kayles.

It will likely be hard to find a polynomial-time algorithm for Arc
Kayles, and therefore also for 2P 3-Value Set. A slightly more general
version of Arc Kayles is mentioned to be PSPACE-complete in [13],
while the natural generalization of Arc Kayles to hypergraphs with



unbounded hyperedge size is PSPACE-hard by the complexity of poset
games [10].

The 2-player SET problem on graphs is a natural restriction of Arc
Kayles, though this version of SET, unlike its hypergraph counterpart
turns out to be trivial: if the size of the Sets (i.e. the number of different
values) is 2 then any 2 cards form a Set; thus the 2-player problem is
equivalent to Arc Kayles on complete graphs and becomes a simple
matter of parity of the number of nodes.

Let us consider a natural parameterization of 2P 3-Value Set. In
this problem, the question is whether a winning outcome for the first
player can be achieved within at most r rounds (with r being the param-
eter). Parameterized problems of this form have been considered in the
past, beginning with [1], where it was established that the r-move param-
eterized version of Node Kayles is AW[*]-hard. 2P 3-Value Set (and
thus Arc Kayles too), as we show in Theorem 5, parameterized by the
number of rounds turns out to be FPT.

Theorem 5. 2P 3-Value Set parameterized by the number of allowed
rounds r is FPT.

Proof. First, observe that hypergraph G where the game is played should
have an edge dominating set of size at most r and thus a hitting set of
size at most 3r. If there is no hitting set of size at most 3r, simply reply
no because it’s then impossible for the first player to end the game in
r moves. Otherwise we compute such a hitting set. This can be done in
FPT time [14]. Name the vertices of the hitting set h1, h2, . . . , hs, where
s is the size of the hitting set.

We can now reduce our problem to an ordered version of Node
Kayles on an r-partite graph. In this version the input is an undirected
simple graph G′(V,E) where V is partitioned into r independent sets
V1, . . . , Vr. The two players alternate turns, and in turn i the current
player must select a vertex from Vi so that it has no edges to previously
selected vertices.

We can construct G′ from G as follows: for each hyperedge e of G
construct r vertices e1, . . . , er in G′, such that ei ∈ Vi for all i. If two
hyperedges e, f share an endpoint in G connect the vertices ei, fj for all
i 6= j. It is not hard to see that player 1 has a winning strategy in the
new game if and only if he has a winning strategy of length at most r in
the original game.

We will say that a vertex ei of G′ has color j when the hitting set
vertex hj is contained in the hyperedge e. Notice that all vertices of G′



have some color, and none can have more than three. Also, for any pair
of colors i, j there is at most one vertex in each partite set that has
both colors i and j, since by the Set property any two vertices of the
original hypergraph have a unique third vertex with which they form a
Set. Finally, note that for each i such that 1 ≤ i ≤ s, the vertices with
color i form an r-partite complete subgraph in G′, since they all come
from hyperedges that contain hi. An example of the construction appears
in figure 7.

Fig. 7. An example of the construction of the r−partite graph G′ from
hypergraph G for r = 3.

Partition the set Vr into subsets such that each set contains vertices
with exactly the same colors. The subsets where vertices have two or three
colors have, as we argued, size 1. Consider now the subset of vertices
Sr,i ⊆ Vr which have color i only. We first have the following:

Claim. A vertex ej ∈ Vj , with j 6= r and ej not having color i can have
at most 2 neighbors in Sr,i.

Proof. Suppose that ej has three distinct neighbors in Sr,i. Let the hyper-
edges corresponding to these vertices be {hi, u1, v1}, {hi, u2, v2}, {hi, u3, v3}.
Notice that hi is the only hitting set vertex in these sets, as i is the only
color of vertices in Sr,i. Now, ej contains hj which is distinct from hi and
all other vertices in these sets. So, in order for ej to intersect all three of
these sets, two of them must share a common vertex other than hi. But
this contradicts the Set property that any two elements have a unique
third with which they form a Set. ut

From Claim 4 we now know that if Sr,i contains at least 2r vertices,
then it will be possible to play it if and only if no vertex with color i
is played in the first r − 1 moves. Perform the following transformation:
delete all vertices of Sr,i and replace them with a single vertex that is
connected to all vertices in other partite sets that have color i.



The above reduction rule is safe. To see this, consider any play of the
first r moves. If a vertex of color i is used, no vertex from Sr,i can be
used in the last move in both graphs. If color i is not used, some vertex of
Sr,i can be used in both graphs, and it is immaterial which will be played
since this is the last move.

Because of the above we can now assume that |Sr,i| ≤ 2r. Thus,
|Vr| = O(r2), because we have s = O(r) sets Sr,i, as well as the single
vertices which may have a pair of colors.

We will now move on to the preceding partite sets using a similar
argument. We need the following definition: if two vertices ei, fi of same
color c in the same partite set Vi have exactly the same neighbors in all
sets Vj for j > i, then they are called equivalent. We call such vertices
equivalent because, if both are available to be played at round i they
can be selected interchangeably without affecting the rest of the game.
Observe, that equivalent vertices have the same neighbors in Vj for all
j ≥ i + 1. Also observe that each equivalence class cannot have more
than 2 neighbors. Namely, if two vertices of same color c have at least one
common neighbor then from claim 4 this common neighbor cannot have
more than these two vertices as common neighbors from color class c. On
the other hand, if two or more vertices of color c both have no neighbors,
then we can all merge them into a single vertex.

We will use this fact to show that we can reduce the graph so that
in the end |Vi| ≤ |Vi+1|O(r). Initially it may appear that the argument
would lead to the conclusion that |Vi| ≤ 2|Vi+1|, since we have a different
equivalence class of each possible set of neighbors that a vertex of Vi can
have in Vi+1. However, observe that each vertex of Vi can have at most 2s
neighbors with which it does not share a color in Vi+1, since from Claim
4 it can have at most 2 neighbors in each group that correspond to a
different color. Thus, the possible neighborhoods are at most

(|Vi+1|
2s

)
=

|Vi+1|O(r).

From the above it follows that the order of G′ after applying the above
preprocessing exhaustively is 22

O(r)
, which gives a kernel. ut

The proof only uses the property of SET that every pair of cards has
a unique third that forms a Set with them. Thus the game is FPT even
when played on the more general class of 3-uniform hypergraphs having
this property. Also, Corollary 4 follows directly from Theorems 3 and 5:

Corollary 4. The natural parameterization of Arc Kayles by the num-
ber of rounds played is FPT.



The proof of Theorem 5 gives a doubly exponential parameter depen-
dence. Below we present a simpler algorithm which also implies a better
complexity.

Proof. (Sketch. ) First, observe that graph G where the game is played
should have a vertex cover of size at most s = 2r. If not, reply no. The
remaining vertices forming an independent set can be divided into 2s

equivalence classes depending on their neighbors in the vertex cover.

If an equivalence class is large enough, playing any edge in an equiv-
alence class can be replaced by playing any other from the class without
affecting the rest of the game. Namely, if an equivalence class is joined to
t vertices in the vertex cover, there can be at most t ≤ s vertices played
from this class and it is unimportant which ones are played. Thus, if a
class has more than t vertices we can simply leave it with t vertices and
delete the rest.

Because of the above we have 2s groups of vertices each containing at
most s vertices and a vertex cover of size s. This means that the graph
contains at most 22s edges. Since in each turn a player selects an edge the
number of possible plays is at most (22s)s = 2O(r2). Simply enumerating
them all gives an FPT algorithm. ut

5 Conclusions and Open Problems

In this paper we studied the computational complexity of the game of
SET and presented some interesting connections with other well-studied
problems, such as Perfect Multi-Dimensional Matching, Indepen-
dent Edge Dominating Set and Set Packing.

The one-round case of SET is now fairly well-understood. However
there are quite a few interesting open problems one might consider in
the multi-round case, especially the two-player version 2P 3-Value Set.
It remains unknown whether this game is PSPACE-Complete. However,
proving the hardness of Arc Kayles on graphs would settle the com-
plexity of this problem as well (which is an interesting open question on
its own accord). Staying on Arc Kayles, it might be interesting to show
whether the game played on general 3-uniform hypergraphs is FPT. We
remind the reader that our proof that 2P 3-Value Set is FPT is based
on the property of SET that each pair of cards can have at most one third
with which they all form a Set. That property is vital for the proof since
it establishes that the line graph has essentially bounded degree. This is
not true for a general 3-uniform hypergraph though.
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Appendix

Definitions

Here, we give the definitions of the problems that we use for the conve-
nience of the reader of this manuscript and for the sake of completeness.
Perfect Multi-Dimensional Matching:

Input: A multigraph G(V,E), with V = V1∪V2∪ . . .∪Vr and |Vi| = k
for all i = 1, . . . r, and E ⊂ V1 × V2 × . . . Vr.
Question: Does there exist a perfect matching in G? I.e, does there
exist a set of k disjoint multiedges {e1, e2, . . . ek} such that

⋃
i ei = V ?

We call each Vi a dimension of G. There are r dimensions in G and
each dimension has k different possible values.
In the parameterized version that we consider, the parameter is k.

Set Packing:

Input: A 3-uniform hypergraph G(V,E) and a natural number k.
Question: Does G have a set packing of size k? In other words, does
there exist a set of disjoint hyperedges E′ ⊂ E with |E′| ≥ k?

Independent Edge Dominating Set:

Input: A (hyper)graph G(V,E) and a natural number k.
Question: Does G have an independent edge dominating set of size k?
In other words, does there exist a disjoint set of (hyper)edges E′ ⊂ E
with |E′| ≤ k such that every (hyper)edge e ∈ E shares at least one
end-point with one or more (hyper)edges in E′?

k-Multicolored Clique:

Input: A k−partite graph G(V,E), with |Vi| = n for all i = 1 . . . k,
V1, V2, . . . Vk pairwise disjoint, and V = V1 ∪ V2 ∪ . . . ∪ Vk.
Question: Does G have a clique of k vertices? In other words, does
there exist a tuple (v1, v2, . . . , vk) ∈ V1×V2×. . . Vk, such that (vi, vj) ∈
E for all i 6= j?
Parameter: k

3-SAT

Input: A logic formula φ written in CNF that contains n variables and
m clauses, where each clause contains at most 3 literals.



Question: Does, does there exist an assignment of truth values to the
variables such that all the clauses of φ are satisfied?

Arc Kayles:

Input: A (hyper)graph G(V,E).
Rules: Two players take turns in picking (hyper)edges from E such
that picked (hyper)edges don’t share endpoints. Player A starts. First
player left without an available (hyper)edge to pick loses.
Question: Is there a winning strategy for player A?

Node Kayles:

Input: A graph G(V,E).
Rules: Two players take turns in picking vertices from V such that
picked vertices form an independent set. Player A starts. First player
left without an available vertex to pick loses.
Question: Is there a winning strategy for player A?
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