Kernelization of the 3-path vertex cover problem

Christoph Brause*, Ingo Schiermeyer
Institute of Discrete Mathematics and Algebra, Technische Universität Bergakademie Freiberg, Prüferstraße 1, 09599 Freiberg, Germany

ARTICLE INFO

Article history:

Received 5 November 2014
Accepted 2 December 2015
Available online 22 January 2016

Keywords:

k-path vertex cover
Vertex cover
Kernelization
Crown reduction

Abstract

The 3-path vertex cover problem is an extension of the well-known vertex cover problem. It asks for a vertex set $S \subseteq V(G)$ of minimum cardinality such that $G-S$ only contains independent vertices and edges. In this paper we will present a polynomial algorithm which computes two disjoint sets T_{1}, T_{2} of vertices of G such that (i) for any 3-path vertex cover S^{\prime} in $G\left[T_{2}\right], S^{\prime} \cup T_{1}$ is a 3-path vertex cover in G, (ii) there exists a minimum 3-path vertex cover in G which contains T_{1} and (iii) $\left|T_{2}\right| \leq 6 \cdot \psi_{3}\left(G\left[T_{2}\right]\right)$, where $\psi_{3}(G)$ is the cardinality of a minimum 3-path vertex cover and T_{2} is the kernel of G.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

During the last years the k-path vertex cover problem (k-PVCP for short) has become more and more interesting in graph theory since it is applicable to many practical problems. While there exist only a few results on k-PVCP, the number of open questions arises expeditiously. Motivated by the problem of ensuring data integrity of communication in wireless sensor networks using the k-generalized Canvas scheme in [6], Brešar et al. introduce the k-PVCP in [2].

A vertex subset $S \subseteq V(G)$ is a k-path vertex cover of G if $G-S$ contains no (not necessarily induced) path of length $k-1$ in G. It is minimum if there exists no k-path vertex cover of smaller cardinality. We denote by $\psi_{k}(G)$ the cardinality of a minimum k-path vertex cover.

For $k=2$, the k-PVCP is the well-known vertex cover problem (VCP for short), which is known to be NP-hard. Moreover, in [2] it is shown that the computation of $\psi_{k}(G)$ is $N P$-hard for $k \geq 3$.

Although the k-PVCP is $N P$-hard, there exist some approximation algorithms for $k \leq 3$. For example, using Nemhauser's and Trotter's result in [5], we have a factor-2 algorithm for $k=2$. For larger k, it is widely unknown whether one can approximate the k-PVCP within a factor smaller than k. An exceptional case is $k=3$, where two factor- 2 algorithms are given by Tu and Zhou in [9] and [10].

For $k=3$, one can find an approximation algorithm and some bounds for $\psi_{3}(G)$ in cubic graphs in [8], whereas [4] gives an exact algorithm to solve the 3-PVCP in time $\mathcal{O}^{*}\left(1.5171^{n}\right)$ for general graphs.
$B y$ Nemhauser's and Trotter's paper in 1975 [5], the question of finding the "hard part" of an NP-hard problem in a graph G arises. In that sense "hard part" means kernel, i.e. the remaining set of vertices after applying some polynomial reduction techniques. In [5], the authors deal with the VCP, i.e. 2-PVCP, and its kernel. Given d, the generalization of the VCP of Fellows et al. in [3] considers the problem of finding a vertex set of minimum cardinality whose removal from G yields a graph possessing vertices of degree at most d. Their result provides a polynomial algorithm computing a vertex set T such that the cardinality of an optimal solution is at most $|T| /\left(d^{3}+4 d^{2}+6 d+4\right)$. It gives us a first kernelization algorithm for the 3-PVCP.

[^0]On the one hand, we have two factor-2 approximation algorithms [9,10], which do not use kernelization techniques. On the other hand, we can compute a kernel $T \subseteq V(G)$ polynomially, such that $|T| \leq 15 \cdot \psi_{3}(G[T]$) (by [3] for $d=1$). Since the range between 2 and 15 is really large, the aim of this paper is to provide a polynomial algorithm which computes a better kernel T for an arbitrary graph G, i.e. $|T| \leq 6 \cdot \psi_{3}(G[T])$.

We consider finite, simple and undirected graphs and use [1] for terminology and notation which are not defined here.
A vertex subset $S \subseteq V(G)$ is independent (dissociative) if $G[S]$ contains no P_{2} (no P_{3}). A set of vertex disjoint P_{3} 's is a P_{3}-packing. It is maximal if there exists no P_{3} in G containing no vertex of a P_{3} in the P_{3}-packing. For some maximal P_{3}-packing \mathcal{P}, the graph $G[V(G) \backslash V(\mathcal{P})]$ is the disjoint union of isolated vertices and isolated edges, i.e. $V(G) \backslash V(\mathcal{P})$ is a dissociative set in G. Let us denote by $\mathcal{P}_{2}(\mathcal{P})$ its set of isolated P_{2} 's and by $\mathcal{P}_{1}(\mathcal{P})$ its set of isolated vertices. Furthermore, let us define $Q(\mathscr{P})$ as set of those vertices in $V(\mathscr{P})$ which have a neighbour in $V\left(\mathscr{P}_{1}(\mathcal{P})\right) \cup V\left(\mathscr{P}_{2}(\mathcal{P})\right)$. If P is a path in \mathcal{P}, then let us denote by $Q(P)$ the set of vertices in P which are in $Q(\mathscr{P})$. To simplify notation, let us say vertices in $V(\mathscr{P})$ are black and vertices in $V\left(\mathcal{P}_{1}(\mathcal{P})\right) \cup V\left(\mathcal{P}_{2}(\mathcal{P})\right)$ are white for some given \mathcal{P}. Moreover, all vertices in $Q(\mathscr{P})$ are called contact vertices. We define the white neighbourhood $N^{w}(u)$ of a black vertex u as the subset of white vertices which are either adjacent to u or have one white common neighbour with u. Additionally, let us define $N_{1}^{w}(u)$ and $N_{2}^{w}(u)$ as $N^{w}(u) \cap V\left(\mathcal{P}_{1}(\mathcal{P})\right)$ and $N^{w}(u) \cap V\left(\mathscr{P}_{2}(\mathcal{P})\right)$, respectively. Again to simplify notation, let us denote for some dissociative set D by $Q^{\prime}(D)$ the set of all vertices $u \in N(D)$ for which every neighbour in D is not isolated in $G[D]$. To generalize our concepts, let us define by $f(T)$ the set $\bigcup_{u \in T} f(u) \backslash T$ for some function $f: V(G) \rightarrow 2^{V(G)}$ and some set $T \subseteq V(G)$.

2. Results

Our main objective is to provide a polynomial algorithm computing a kernel of the 3-path vertex cover problem in G. We need two important tools for it. First, we introduce the concept of a 3-path crown decomposition.

Definition. A 3-path crown decomposition (H, C, R) is a partition of the vertices of the graph G such that
(i) H (the header) separates C and R, i.e. there exist no edges between C and R,
(ii) C (the crown) is a dissociative set in G,
(iii) there exists a function $F: H \rightarrow\binom{c \cup H}{3}$ such that $\{G[F(u)]: u \in H\}$ is a P_{3}-packing in $G[H \cup C]$ of cardinality $|H|$ whose every path contains exactly one vertex of H.

Special cases of the 3-path crown decomposition are introduced by Prieto and Sloper in [7] and are known as fat crown decomposition and double crown decomposition. The first one requires the additional property that only end-vertices of the P_{3} 's in the P_{3}-packing are elements of H while the second one considers C as an independent set in G.

The usefulness of the 3-path crown decomposition is presented in the next lemma.
Lemma 2.1. A graph G that admits a 3-path crown decomposition (H, C, R) has a 3-path vertex cover of size at most c if and only if $G[R]$ has a 3-path vertex cover of size at most $c-|H|$.
Proof. Since C is a dissociative set in $G, S^{\prime} \cup H$ is a 3-path vertex cover of size $\left|S^{\prime}\right|+|H|$ in G if $S^{\prime} \subseteq R$ is a 3-path vertex cover in $G[R]$.

Let S be a 3-path vertex cover in G. Assume $H \cap(V(G) \backslash S) \neq \emptyset$. Due to the definition of a 3-path crown decomposition, we have a P_{3}-packing in $G[H \cup C]$ of cardinality $|H|$ where each P_{3} has exactly one vertex in H. Since these P_{3} are covered by H, it follows $|C \cap S| \geq|H \cap(V(G) \backslash S)|$. This inequality implies that $S \backslash(H \cup C)$ is a 3-path vertex cover of size at most $|S|-|H|$.

According to the above lemma, $\psi_{3}(G)=\psi_{3}(G[R])+|H|$ follows easily by deleting C and H of a 3-path crown decomposition. It indicates the importance of the lemma. Our aim is to provide a polynomial kernelization algorithm by using the concept of 3-path crown decomposition. The computation of the latter one can be divided into two steps.

The first one considers the fat crown decomposition.
Lemma 2.2 (Prieto and Sloper [7]). Let G be a graph and \mathcal{g} be a collection of independent P_{2} 's such that $|\mathcal{F}| \geq|N(V(\mathcal{g}))|$. Then we can find a fat crown decomposition (H, C, R) where $C \subseteq V(\mathcal{q})$ and $H \subseteq N(V(\mathcal{q}))$ in linear time.

Let G be a graph and D be a dissociative set. To find a 3-path crown decomposition, we contract all edges in D and obtain a graph G^{*}. By the above lemma, for some given dissociative set D in G either one can find a fat crown decomposition in linear time, which perhaps is a 3-path crown decomposition, or the number of contracted edges is bounded from above by $|N(D)|$. It helps us for the second step, which basically uses the property that we obtain an independent set by contracting all edges in D.

Lemma 2.3. For a graph G and a dissociative set D, let G^{*} be the graph constructed by edge contraction in D and adding an additional vertex u^{\prime}, which is only adjacent to u, for every vertex $u \in Q^{\prime}(D)$. Furthermore, let us denote by D^{*} the set $V\left(G^{*}\right) \backslash(V(G) \backslash D)$. If $\left(H, C^{*}, R\right)$ is a double crown decomposition in G^{*} such that $C^{*} \subseteq D^{*}$ and $H \subseteq N\left(D^{*}\right)$, then $(H, V(G) \backslash(H \cup R), R)$ is a 3-path crown decomposition in G such that $V(G) \backslash(H \cup R) \subseteq D$ and $H \subseteq N(D)$.

Proof. From the definition of G^{*} it is clear that $V(G) \backslash(H \cup R)$ is a dissociative set. Suppose that there exists an edge between $V(G) \backslash(H \cup R)$ and R in G. It implies the existence of an edge between C^{*} and R in G^{*}, which is a contradiction to the definition of the double crown decomposition $\left(H, C^{*}, R\right)$ in G^{*}. Let us denote by F^{*} a function $F^{*}: H \rightarrow\binom{c \cup H}{3}$ such that $\left\{G\left[F^{*}(u)\right]: u \in H\right\}$ is a P_{3}-packing in $G\left[H \cup C^{*}\right]$ of cardinality $|H|$ whose every path contains exactly one vertex of H. For any $u \in H$, let us define $F[u]$ by $\left\{u, v_{1}, v_{2}\right\}$ if there exists a vertex $v \in F^{*}(u)$ which corresponds to the contracted edge $v_{1} v_{2}$ and $F^{*}[u]$ otherwise. Trivially, if the added vertex u^{\prime} of $u \in Q\left(P^{\prime}\right)$ is an element of $F^{*}[u]$, then the third vertex in $F^{*}[u]$ corresponds to a contracted edge. Furthermore, by the definition of G^{*} and F^{*}, F fulfills all conditions in (iii) of the definition of a 3-path crown decomposition.

By the above lemma, it is clear that in the second step we reduce the problem of finding a 3-path crown decomposition in G to the problem of finding a double crown decomposition in G^{*}. We have the following lemma, proved by Prieto and Sloper in [7].

Lemma 2.4 (Prieto and Sloper [7]). Let G be a graph and I be an independent set such that $|I| \geq 2 \cdot|N(I)|$. We can find a double crown decomposition (H, C, R) such that $C \subseteq I$ and $H \subseteq N(I)$ in linear time.

Combining both steps leads to the following lemma.
Lemma 2.5. Let G be a graph and D be a dissociative set such that $|D| \geq 3 \cdot|N(D)|-\left|Q^{\prime}(D)\right|$. We find a 3-path crown decomposition (H, C, R) such that $C \subseteq D$ and $H \subseteq N(D)$ in $\mathcal{O}\left(n^{2}\right)$.

Proof. In $\mathcal{O}\left(n^{2}\right)$ we can decide whether or not the number of edges in D is at least $|N(D)|$ (complexity follows from the computation of $N(D)$). In the first case, we find a fat crown decomposition by Lemma 2.2 in linear time. In the second case, we contract at most $|N(D)|$ edges in $\mathcal{O}(m)$. Furthermore, we can compute $Q^{\prime}(D)$ by checking for each vertex whether or not it is an element of $V(G) \backslash D$ or is isolated in $G[D]$ or none of both, and secondly considering all vertices in $V(G) \backslash D$ and check whether or not they have a neighbour which is isolated in $G[D]$ in $\mathcal{O}\left(n^{2}\right)$. Afterwards, adding for every $u \in Q^{\prime}(D)$ a vertex u^{\prime}, which is only adjacent to u, can be done in $\mathcal{O}(n)$ (please note that the number of new vertices is at most n). Altogether gives a complexity of $\mathcal{O}\left(n^{2}\right)$ for the computation of the new independent set D^{*} and its neighbourhood $N\left(D^{*}\right)=N(D)$. The cardinality of D^{*} is the number of vertices in D plus the number of added vertices minus the number of contracted edges. Therefore, $|D| \geq 2 \cdot|N(D)|$. Now we find a 3-path crown decomposition by Lemma 2.4 in linear time.

With Lemma 2.5 we have a powerful decomposition tool. Next, we focus on the computation of a special maximal P_{3}-packing, which is the second main tool we need to design our algorithm.

As further notation, let us define for some P_{3}-packing \mathcal{P} the set $\mathcal{T}_{\text {(iii) }}(\mathscr{P})$ as follows: Add all P_{3} 's of \mathcal{P} which have in the currently considered graph at most 3 white neighbours to $\mathcal{T}_{\text {(iii) }}(\mathcal{P})$, delete $N_{G}\left[V\left(\mathcal{T}_{\text {(iii) }}(\mathscr{P})\right)\right]$, and repeat this process as long as such P_{3} 's exist in \mathcal{P}.

Now by deleting all paths in $\mathcal{T}_{\text {(iii) }}(\mathcal{P})$ and their white neighbours we may obtain new white neighbourhoods for paths not in $\mathcal{T}_{\text {(iii) }}(\mathscr{P})$. Note that the number of white neighbours is at least 4 and the number of contact vertices on a path may reduce. Using the new white neighbourhoods, let $\mathcal{T}_{(i v)}(\mathcal{P})$ be the set of P_{3} 's in \mathcal{P} with one contact vertex and at least 4 white neighbours, and $\mathcal{T}_{(v)}(\mathcal{P})$ be the set of P_{3} 's in \mathcal{P} which are not in $\mathcal{T}_{\text {(iii) }}(\mathcal{P}) \cup \mathcal{T}_{(i v)}(\mathcal{P})$ but fulfill $\left|N_{1}^{w}\left(\left\{v_{1}, v_{3}\right\}\right)\right|=1, N_{1}^{w}\left(v_{2}\right)=\emptyset$, and $N_{2}^{w}\left(\left\{v_{1}, v_{3}\right\}\right)=\emptyset$.

Lemma 2.6. Let \mathcal{P} be a P_{3}-packing, and $P=v_{1} v_{2} v_{3}$ be a path of length 2 in \mathcal{P}. Then at least one of the following statements is true:
(i) we find a P_{3}-packing \mathcal{P}^{\prime} of cardinality at least $|\mathscr{P}|+1$,
(ii) we find a P_{3}-packing \mathcal{P}^{\prime} of cardinality $|\mathcal{P}|$ such that $\left|\mathcal{P}_{2}\left(\mathcal{P}^{\prime}\right)\right|>\left|\mathcal{P}_{2}(\mathcal{P})\right|$,
(iii) $P \in \mathcal{T}_{\text {(iii) }}(\mathcal{P})$,
(iv) $P \in \mathcal{T}_{\text {(iv) }}(\mathcal{P})$,
(v) $P \in \mathcal{T}_{(v)}(\mathcal{P})$.

Proof. Suppose none of the statements is true. Since P is not an element of $\mathcal{T}_{\text {(iii) }}(\mathcal{P})$, we consider the graph obtained by deleting all paths of $\mathcal{T}_{\text {(iii) }}(\mathscr{P})$ and their white neighbours. Now, every path in \mathscr{P} has at least four white neighbours in the obtained graph. Since P is not a path in $\mathcal{T}_{(i v)}(\mathcal{P}), P$ has at least 2 contact vertices.

Assume $N_{2}^{w}(P) \neq \emptyset$. Then there exists a path of two vertices, denoted by w_{1} and w_{2}, in $G\left[N^{w}(P)\right]$. We assume, without loss of generality, that w_{1} is adjacent to a vertex in $Q(P)$.

If w_{1} is adjacent to v_{1} or v_{3}, without loss of generality, assume it is v_{1}, and a white vertex w_{3} of $N^{w}(P) \backslash\left\{w_{1}, w_{2}\right\}$ has a neighbour in $\left\{v_{2}, v_{3}\right\}$, then we find a P_{3}-packing $\mathcal{P}^{\prime}=\left(\mathscr{P} \backslash\left\{v_{1} v_{2} v_{3}\right\}\right) \cup\left\{G\left[\left\{v_{1}, w_{1}, w_{2}\right\}\right], G\left[\left\{v_{2}, v_{3}, w_{3}\right\}\right]\right\}$ with the property described in (i). By this contradiction, we can assume, without loss of generality, that w_{1} is adjacent to v_{1} and all vertices in $N^{w}(P) \backslash\left\{w_{1}, w_{2}\right\}$ are non-adjacent to v_{2} and v_{3}. Consequently, by $N^{w}(P) \geq 4$, there exist two distinct vertices $w_{3}, w_{4} \in$ $N^{w}(P) \backslash\left\{w_{1}, w_{2}\right\}$ such that $G\left[\left\{v_{1}, w_{3}, w_{4}\right\}\right]$ is a P_{3}. By $|Q(P)| \geq 2$ we have that w_{1} or w_{2} is adjacent to v_{2} or v_{3} (say w_{i} is adjacent to one of them), which implies that we find a P_{3}-packing $\mathcal{P}^{\prime}=\left(\mathcal{P} \backslash\left\{v_{1} v_{2} v_{3}\right\}\right) \cup\left\{G\left[\left\{v_{1}, w_{3}, w_{4}\right\}\right], G\left[\left\{v_{2}, v_{3}, w_{i}\right\}\right]\right\}$ with the property described in (i), a contradiction.

The above contradictions imply that no vertex in $N_{2}^{w}(P)$ is adjacent to v_{1} or v_{3}.
Let us consider the case where w_{1}, the end-vertex of a white path of two vertices, is adjacent to v_{2}. Let us denote by w_{2} its neighbour in $N_{2}^{w}(P)$. Since we assume $|Q(P)| \geq 2$, there exists at least one vertex $w_{3} \in N_{1}^{w}(P)$ which is adjacent to v_{1} or v_{3}. Assume, without loss of generality, that w_{3} is a neighbour of v_{1}. If there exists a vertex $w_{4} \in N_{1}^{w}(P)$, different from w_{1}, w_{2} and w_{3}, then we find a P_{3}-packing $\mathscr{P}^{\prime}=\left(\mathcal{P} \backslash\left\{v_{1} v_{2} v_{3}\right\}\right) \cup\left\{w_{3} v_{1} w_{4}, v_{2} w_{1} w_{2}\right\}$ if w_{4} is adjacent to v_{1}, a contradiction to (i). Hence, w_{4} is non-adjacent to v_{1}. Now, $\mathcal{P}^{\prime}=\left(\mathscr{P} \backslash\left\{v_{1} v_{2} v_{3}\right\}\right) \cup\left\{v_{3} v_{2} w_{4}\right\}$ is a P_{3}-packing if w_{4} is adjacent to v_{2}. This contradicts (ii) and implies that w_{4} is adjacent to v_{3}. Therefore, we find a P_{3}-packing $\mathscr{P}^{\prime}=\left(\mathcal{P} \backslash\left\{v_{1} v_{2} v_{3}\right\}\right) \cup\left\{w_{3} v_{1} v_{2}, w_{4} v_{3} w_{5}\right\}$ or $\mathcal{P}^{\prime}=\left(\mathcal{P} \backslash\left\{v_{1} v_{2} v_{3}\right\}\right) \cup\left\{v_{2} v_{3} w_{4}\right\}$ depending on whether or not there exists a vertex $w_{5} \in N_{w}^{1}\left(v_{3}\right) \backslash\left\{w_{1}, w_{2}, w_{3}, w_{4}\right\}$. This contradicts (i) or (ii). Now (v) follows, a contradiction.

Note that, above transformations imply $\left|\mathcal{P}_{2}(\mathcal{P})\right| \leq\left|\mathcal{P}_{2}\left(\mathcal{P}^{\prime}\right)\right|+2$ whenever $\left|\mathcal{P}^{\prime}\right|>|\mathscr{P}|$.
The above contradictions imply $N_{2}^{w}(P)=\emptyset$ and $\left|N_{1}^{w}(P)\right| \geq 4$. If $\left|N_{1}^{w}\left(v_{1}\right)\right| \geq 2$ or $\left|N_{1}^{w}\left(v_{3}\right)\right| \geq 2$, then, without loss of generality, let $w_{1}, w_{2} \in N_{1}^{w}\left(v_{1}\right)$. Since $|Q(P)| \geq 2$, without loss of generality, there exists a vertex $w_{3} \in N_{1}^{w}(P) \backslash\left\{w_{1}, w_{2}\right\}$ which is adjacent to v_{2} or v_{3} and we find a P_{3}-packing $\mathcal{P}^{\prime}=\left(\mathcal{P} \backslash\left\{v_{1} v_{2} v_{3}\right\}\right) \cup\left\{G\left[\left\{v_{1}, w_{1}, w_{2}\right\}\right], G\left[\left\{v_{2}, v_{3}, w_{3}\right\}\right]\right\}$ with the property described in (i). This contradiction implies that we can assume, without loss of generality, that $\left|N_{1}^{w}\left(v_{1}\right)\right|=1$ and $\left|N_{1}^{w}\left(v_{2}\right) \backslash N_{1}^{w}\left(v_{1}\right)\right| \geq 2$, i.e. let $w_{1} \in N_{1}^{w}\left(v_{1}\right), w_{2}, w_{3} \in N_{1}^{w}\left(v_{2}\right)$ be pairwise distinct vertices. Now we find a P_{3}-packing $\mathcal{P}^{\prime}=\left(\mathcal{P} \backslash\left\{v_{1} v_{2} v_{3}\right\}\right) \cup\left\{w_{2} v_{2} w_{3}\right\}$ with the property described in (ii), a contradiction.

The above contradictions prove the lemma.
The proof of the above lemma consists of a case distinction on $N^{w}(P)$. For some P_{3}-packing, we can compute $N_{1}^{w}(u)$ and $N_{2}^{w}(u)$ for all black vertices $u \in V(G)$ based on the following algorithm in $\mathcal{O}\left(n^{2}\right)$: For each vertex check whether it is black or it is white and has no white neighbour or it is white and has a white neighbour. Afterwards, for every black vertex u and every white neighbour v of u, v belongs to $N_{1}^{w}(u)$ if v is white and has no white neighbour. Otherwise, v and its white neighbour belong to $N_{2}^{w}(u)$.

After computing the white neighbourhood, we can check whether or not a path of \mathscr{P} has at most 3 white neighbours, in a positive case, add it to $\mathcal{T}_{\text {(iii) }}(\mathcal{P})$, delete all of its neighbours from the white neighbourhoods of other paths in $\mathcal{O}(n)$, and repeat this process as long as possible. Since the number of paths is at most $\mathcal{O}(n)$ and we have at most $\mathcal{O}(n)$ repetitions, this procedure can be done in at most $\mathcal{O}\left(n^{3}\right)$.

Now the decision on whether or not (iii) or (iv) of Lemma 2.6 is fulfilled and, in a negative case, the computation of \mathcal{P}^{\prime} can be done in $\mathcal{O}(1)$ for some given path $P \in \mathcal{P} \backslash \mathcal{T}_{\text {(iii) }}(\mathcal{P})$ and in $\mathcal{O}(n)$ for all paths of $\mathcal{P} \backslash \mathcal{T}_{\text {(iii) }}(\mathcal{P})$.

The inductive repetition of the operations in the proof of Lemma 2.6 provides a method, how to compute a maximal P_{3}-packing \mathcal{P}^{\prime} such that $\mathcal{P}^{\prime}=\mathcal{T}_{(\text {iii) }}\left(\mathcal{P}^{\prime}\right) \cup \mathcal{T}_{\text {(iv) }}\left(\mathcal{P}^{\prime}\right) \cup \mathcal{T}_{(v)}\left(\mathcal{P}^{\prime}\right)$.

Let us denote the transition of \mathcal{P} to \mathcal{P}^{\prime} as suggested in statements (i) and (ii) of Lemma 2.6 as an operation. It is clear that at least the cardinality of the P_{3}-packing or the number of P_{2} 's in the remaining graph increases. But by further observation on the case analysis in the proof, whenever the number of P_{3} 's increases, the cardinality of $\mathcal{P}_{2}\left(\mathcal{P}^{\prime}\right)$ decreases by at most 2 . Hence, we apply at most n operations to find a maximal P_{3}-packing \mathcal{P}^{\prime} such that $\mathcal{P}^{\prime}=\mathcal{T}_{\text {(iii) }}\left(\mathcal{P}^{\prime}\right) \cup \mathcal{T}_{(i v)}\left(\mathcal{P}^{\prime}\right) \cup \mathcal{T}_{(v)}\left(\mathcal{P}^{\prime}\right)$.

The following idea computes a maximal P_{3}-packing in $\mathcal{O}(m \cdot n)$. Let \mathcal{P} be an empty P_{3}-packing. For every edge $u v \in E(G)$, check whether or not u and v are in $V(\mathcal{P})$. If both are not, then check whether or not there exists a neighbour $w \in V(G) \backslash V(\mathcal{P})$ of $\{u, v\}$. In a positive case, add $G[\{u, v, w\}]$ to \mathcal{P} and continue with the next edge.

The above statements imply the following lemma.
Lemma 2.7. One can compute a maximal P_{3}-packing \mathcal{P} such that $\mathcal{P}=\mathcal{T}_{\text {(iii) }}(\mathcal{P}) \cup \mathcal{T}_{(\text {iv })}(\mathcal{P}) \cup \mathcal{T}_{(v)}(\mathcal{P})$ in $\mathcal{O}\left(n^{4}\right)$.
We have introduced the two main tools of our proof. Let us consider a P_{3}-packing \mathcal{P} as stated in Lemma 2.7. Then we denote by $S_{2}(\mathcal{P})$ the set $V\left(\mathcal{P}_{2}(\mathcal{P})\right) \backslash N^{w}\left(V\left(\mathcal{T}_{(\text {iii) }}(\mathscr{P})\right)\right.$), i.e. it is the vertex set of all P_{2} 's in $\mathscr{P}_{2}(\mathcal{P})$, which are not in the white neighbourhood of a P_{3} in $\mathcal{T}_{\text {(iii) }}(\mathscr{P})$. Similarly, $S_{1}(\mathscr{P})$ is defined as the set $V\left(\mathcal{P}_{1}(\mathcal{P})\right) \backslash N^{w}\left(V\left(\mathcal{T}_{\text {iii) }}(\mathcal{P}) \cup \mathcal{T}_{(v)}(\mathcal{P})\right)\right)$, i.e. it is the set of all vertices in $\mathcal{P}_{1}(\mathcal{P})$, which are not in the white neighbourhood of a P_{3} in $\mathcal{T}_{\text {(iii) }}(\mathscr{P}) \cup \mathcal{T}_{(v)}(\mathcal{P})$. $S_{1}^{\prime}(\mathcal{P})$ denotes the set $N_{1}^{w}\left(V\left(\mathcal{T}_{(v)}(\mathscr{P})\right)\right) \backslash N^{w}\left(V\left(\mathcal{T}_{(\text {iii) }}(\mathcal{P})\right)\right)$, i.e. all vertices of $\mathcal{P}_{1}(\mathcal{P})$, which are adjacent to some P_{3} in $\mathcal{T}_{(v)}(\mathscr{P})$ but not to some P_{3} in $\mathcal{T}_{\text {(iii) }}(\mathcal{P})$. Clearly, $S_{2}(\mathcal{P}), S_{1}(\mathcal{P}), S_{1}^{\prime}(\mathcal{P}), N^{w}\left(V\left(\mathcal{T}_{\text {(iii) }}(\mathcal{P})\right)\right.$) is a decomposition of $V(G) \backslash V(\mathcal{P})$.

Please recall that $N_{1}^{w}(v)$ and $N_{2}^{w}(v)$ are computable for all $v \in V(G) \backslash V(\mathcal{P})$ in $\mathcal{O}\left(n^{2}\right)$. Afterwards, we can compute $\mathcal{T}_{\text {(iii) }}(\mathcal{P}), \mathcal{T}_{\text {(iv) }}(\mathcal{P})$ and $\mathcal{T}_{(v)}(\mathcal{P})$ in $\mathcal{O}\left(n^{3}\right)$. Since the white neighbourhood of a vertex is already computed, we find $N^{w}\left(\mathcal{T}_{\text {(iii) }}(\mathcal{P})\right)$ by selecting each white neighbour of a vertex in $V\left(\mathcal{T}_{\text {iii) }}(\mathcal{P})\right)$ in $\mathcal{O}(n)$. Now any white vertex in $N_{1}^{w}(V(\mathcal{P}))$, which was not selected by the previous step, belongs to $S_{1}^{\prime}(\mathcal{P})$ or $S_{1}(\mathcal{P})$ depending on whether or not it is adjacent to a vertex in $\mathcal{T}_{(v)}(\mathscr{P})$. Trivially, this can be now decided in $\mathcal{O}(n)$. Similarly, we have the same time complexity for computing $S_{2}(\mathcal{P})$.

Using above notations and complexities, we obtain Algorithm 1 and our main theorem.
Theorem 2.8. Algorithm 1 computes two disjoint sets T_{1}, T_{2} in $\mathcal{O}\left(n^{5}\right)$ such that
(i) for any 3-path vertex cover S^{\prime} in $G\left[T_{2}\right], S^{\prime} \cup T_{1}$ is a 3-path vertex cover in G,
(ii) there exists a minimum 3-path vertex cover in G which contains T_{1}, and
(iii) $\left|T_{2}\right| \leq 6 \cdot \psi_{3}\left(G\left[T_{2}\right]\right)$.

```
Algorithm 1
    \(T_{1}:=\emptyset, T_{2}:=V(G)\)
    Compute a maximal \(P_{3}\)-packing \(\mathscr{P}\) in \(G\) such that \(\mathscr{P}=\mathcal{T}_{\text {(iii) }}(\mathcal{P}) \cup \mathcal{T}_{\text {(iv) }}(\mathcal{P}) \cup \mathcal{T}_{(v)}(\mathcal{P})\).
    while \(\left|S_{2}(\mathcal{P}) \cup S_{1}(\mathcal{P})\right| \geq 3 \cdot\left|N\left(S_{2}(\mathcal{P}) \cup S_{1}(\mathcal{P})\right)\right|-\left|Q^{\prime}\left(S_{2}(\mathcal{P}) \cup S_{1}(\mathcal{P})\right)\right|\) do
        Compute a 3-path crown decomposition \((H, C, R)\) in \(G\left[T_{2}\right]\) using the dissociative set \(S_{2}(\mathcal{P}) \cup S_{1}(\mathcal{P})\).
        \(T_{1}:=T_{1} \cup H, T_{2}:=T_{2} \backslash(H \cup C)\)
        Compute a maximal \(P_{3}\)-packing \(\mathcal{P}\) in \(G\) such that \(\mathcal{P}=\mathcal{T}_{\text {(iii) }}(\mathcal{P}) \cup \mathcal{T}_{\text {(iv) }}(\mathcal{P}) \cup \mathcal{T}_{(v)}(\mathcal{P})\).
    end while
```

Proof. The time-complexity for steps $2,4,6$ and the decision in 3 is given by the above results. Moreover, since we delete vertices, the number of loop repetitions is at most n. This observation gives the complexity of our algorithm. Obviously, T_{2} is the set of vertices which remain in the graph after the algorithm stops. Furthermore, T_{1} consists of all headers H. The concept of 3-path crown decomposition gives (i) and (ii).

Let \mathcal{P} be a maximal P_{3}-packing computed in steps 2 or 6 for $G\left[T_{2}\right]$. Then $\psi_{3}\left(G\left[T_{2}\right]\right) \geq|\mathcal{P}|$. Moreover, by definition we have

$$
T_{2}=\left[V\left(\mathcal{T}_{\text {(iii) }}(\mathscr{P})\right) \cup N^{w}\left(V\left(\mathcal{T}_{\text {(iii) }}(\mathcal{P})\right)\right)\right] \cup\left[\left[V\left(\mathcal{T}_{\text {(iv) }}(\mathcal{P}) \cup \mathcal{T}_{(v)}(\mathcal{P})\right)\right] \cup S_{2}(\mathcal{P}) \cup S_{1}(\mathscr{P}) \cup S_{1}^{\prime}(\mathcal{P})\right]
$$

and

$$
\left|V\left(\mathcal{T}_{\text {(iii) }}(\mathcal{P})\right) \cup N^{w}\left(V\left(\mathcal{T}_{\text {(iii) }}(\mathcal{P})\right)\right)\right| \leq 6 \cdot\left|\mathcal{T}_{\text {(iii) }}(\mathcal{P})\right| .
$$

Since every path in $\mathcal{T}_{(v)}(\mathcal{P})$ has at most one white neighbour in $S_{1}^{\prime}(\mathcal{P})$, we have $\left|S_{1}^{\prime}(\mathcal{P})\right| \leq\left|\mathcal{T}_{(v)}(\mathscr{P})\right|$. Furthermore, every path in $\mathcal{T}_{(v)}(\mathscr{P})$ contains a vertex of $Q^{\prime}\left(S_{2}(\mathcal{P}) \cup S_{1}(\mathcal{P})\right)$. Hence, it follows $\left|S_{1}^{\prime}(\mathcal{P})\right| \leq\left|Q^{\prime}\left(S_{2}(\mathscr{P}) \cup S_{1}(\mathscr{P})\right)\right|$. We conclude

$$
\begin{aligned}
& \left|\left[V\left(\mathcal{T}_{(i v)}(\mathcal{P}) \cup \mathcal{T}_{(v)}(\mathcal{P})\right)\right] \cup S_{2}(\mathcal{P}) \cup S_{1}(\mathcal{P}) \cup S_{1}^{\prime}(\mathcal{P})\right| \\
& \quad \leq\left|\left[V\left(\mathcal{T}_{(i v)}(\mathcal{P}) \cup \mathcal{T}_{(v)}(\mathcal{P})\right)\right] \cup S_{2}(\mathcal{P}) \cup S_{1}(\mathcal{P})\right|+\left|Q^{\prime}\left(S_{2}(\mathcal{P}) \cup S_{1}(\mathcal{P})\right)\right|
\end{aligned}
$$

Since the condition for applying the loop is not fulfilled and every path in $\mathcal{T}_{(i v)}(\mathcal{P}) \cup \mathcal{T}_{(v)}(\mathscr{P})$ contains at most one vertex which is adjacent to vertices in $S_{2}(\mathcal{P}) \cup S_{1}(\mathcal{P})$,

$$
\left|\left[V\left(\mathcal{T}_{(i v)}(\mathcal{P}) \cup \mathcal{T}_{(v)}(\mathcal{P})\right)\right] \cup S_{2}(\mathcal{P}) \cup S_{1}(\mathcal{P})\right| \leq 6 \cdot\left|\mathcal{T}_{(i v)}(\mathcal{P}) \cup \mathcal{T}_{(v)}(\mathcal{P})\right|-\left|Q^{\prime}\left(S_{2}(\mathcal{P}) \cup S_{1}(\mathcal{P})\right)\right|
$$

is true. Together, both inequalities imply

$$
\left|\left[V\left(\mathcal{T}_{(i v)}(\mathcal{P}) \cup \mathcal{T}_{(v)}(\mathcal{P})\right)\right] \cup S_{2}(\mathcal{P}) \cup S_{1}(\mathcal{P}) \cup S_{1}^{\prime}(\mathcal{P})\right| \leq 6 \cdot\left|\mathcal{T}_{(i v)}(\mathcal{P}) \cup \mathcal{T}_{(v)}(\mathcal{P})\right|
$$

Now we obtain the desired result $\left|T_{2}\right| \leq 6 \cdot|\mathcal{P}| \leq 6 \cdot \psi_{3}\left(G\left[T_{2}\right]\right)$.

Acknowledgements

We would like to thank the two reviewers for their valuable hints and comments.

References

[1] J.A. Bondy, U. Murty, Graph Theory, Springer, 2008.
[2] B. Brešar, F. Kardoš, J. Katrenič, G. Semanišin, Minimum k-path vertex cover, Discrete Appl. Math. 159 (2011).
[3] M.R. Fellows, J. Guo, H. Moser, R. Niedermeier, A generalization of Nemhauser and Trotter's local optimization theorem, J. Comput. System Sci. 77 (2011) 1141-1158.
[4] F. Kardoš, J. Katrenič, I. Schiermeyer, On computing the minimum 3-path vertex cover and dissociation number of graphs, Theoret. Comput. Sci. 412 (2011) 7009-7017.
[5] G. Nemhauser, J. Trotter, L.E., Vertex packings: Structural properties and algorithms, Math. Program. 8 (1975) 232-248.
[6] M. Novotný, Design and analysis of a generalized canvas protocol, in: P. Samarati, M. Tunstall, J. Posegga, K. Markantonakis, D. Sauveron (Eds.), Information Security Theory and Practices. Security and Privacy of Pervasive Systems and Smart Devices, in: Lecture Notes in Computer Science, vol. 6033, Springer, Berlin, Heidelberg, 2010, pp. 106-121.
[7] E. Prieto, C. Sloper, Looking at the stars, Theoret. Comput. Sci. 351 (2006) 437-445.
[8] J. Tu, F. Yang, The vertex cover P ${ }_{3}$ problem in cubic graphs, Inf. Process. Lett. 113 (2013) 481-485.
[9] J. Tu, W. Zhou, A factor 2 approximation algorithm for the vertex cover P3 problem, Inf. Process. Lett. 111 (2011) 683-686.
[10] J. Tu, W. Zhou, A primal-dual approximation algorithm for the vertex cover P P problem, Theoret. Comput. Sci. 412 (2011) $7044-7048$.

[^0]: * Corresponding author.

 E-mail addresses: brause@math.tu-freiberg.de (C. Brause), schiermeyer@math.tu-freiberg.de (I. Schiermeyer).
 http://dx.doi.org/10.1016/j.disc.2015.12.006
 0012-365X/© 2015 Elsevier B.V. All rights reserved.

