
Discrete Mathematics 339 (2016) 1935–1939

Contents lists available at ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

Kernelization of the 3-path vertex cover problem
Christoph Brause ∗, Ingo Schiermeyer
Institute of Discrete Mathematics and Algebra, Technische Universität Bergakademie Freiberg, Prüferstraße 1, 09599 Freiberg, Germany

a r t i c l e i n f o

Article history:
Received 5 November 2014
Accepted 2 December 2015
Available online 22 January 2016

Keywords:
k-path vertex cover
Vertex cover
Kernelization
Crown reduction

a b s t r a c t

The 3-path vertex cover problem is an extension of the well-known vertex cover problem.
It asks for a vertex set S ⊆ V (G) of minimum cardinality such that G − S only contains
independent vertices and edges. In this paper we will present a polynomial algorithm
which computes two disjoint sets T1, T2 of vertices of G such that (i) for any 3-path vertex
cover S ′ in G[T2], S ′

∪ T1 is a 3-path vertex cover in G, (ii) there exists a minimum 3-path
vertex cover in G which contains T1 and (iii) |T2| ≤ 6 · ψ3(G[T2]), where ψ3(G) is the
cardinality of a minimum 3-path vertex cover and T2 is the kernel of G.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

During the last years the k-path vertex cover problem (k-PVCP for short) has becomemore andmore interesting in graph
theory since it is applicable to many practical problems. While there exist only a few results on k-PVCP, the number of open
questions arises expeditiously. Motivated by the problem of ensuring data integrity of communication in wireless sensor
networks using the k-generalized Canvas scheme in [6], Brešar et al. introduce the k-PVCP in [2].

A vertex subset S ⊆ V (G) is a k-path vertex cover of G if G− S contains no (not necessarily induced) path of length k− 1
in G. It is minimum if there exists no k-path vertex cover of smaller cardinality. We denote by ψk(G) the cardinality of a
minimum k-path vertex cover.

For k = 2, the k-PVCP is the well-known vertex cover problem (VCP for short), which is known to be NP-hard. Moreover,
in [2] it is shown that the computation of ψk(G) is NP-hard for k ≥ 3.

Although the k-PVCP is NP-hard, there exist some approximation algorithms for k ≤ 3. For example, using Nemhauser’s
and Trotter’s result in [5], we have a factor-2 algorithm for k = 2. For larger k, it is widely unknown whether one can
approximate the k-PVCP within a factor smaller than k. An exceptional case is k = 3, where two factor-2 algorithms are
given by Tu and Zhou in [9] and [10].

For k = 3, one can find an approximation algorithm and some bounds forψ3(G) in cubic graphs in [8], whereas [4] gives
an exact algorithm to solve the 3-PVCP in time O∗(1.5171n) for general graphs.

By Nemhauser’s and Trotter’s paper in 1975 [5], the question of finding the ‘‘hard part’’ of an NP-hard problem in a graph
G arises. In that sense ‘‘hard part’’ means kernel, i.e. the remaining set of vertices after applying some polynomial reduction
techniques. In [5], the authors deal with the VCP, i.e. 2-PVCP, and its kernel. Given d, the generalization of the VCP of Fellows
et al. in [3] considers the problem of finding a vertex set of minimum cardinality whose removal from G yields a graph
possessing vertices of degree at most d. Their result provides a polynomial algorithm computing a vertex set T such that
the cardinality of an optimal solution is at most |T |/(d3 + 4d2 + 6d + 4). It gives us a first kernelization algorithm for the
3-PVCP.

∗ Corresponding author.
E-mail addresses: brause@math.tu-freiberg.de (C. Brause), schiermeyer@math.tu-freiberg.de (I. Schiermeyer).

http://dx.doi.org/10.1016/j.disc.2015.12.006
0012-365X/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.disc.2015.12.006
http://www.elsevier.com/locate/disc
http://www.elsevier.com/locate/disc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.disc.2015.12.006&domain=pdf
mailto:brause@math.tu-freiberg.de
mailto:schiermeyer@math.tu-freiberg.de
http://dx.doi.org/10.1016/j.disc.2015.12.006

1936 C. Brause, I. Schiermeyer / Discrete Mathematics 339 (2016) 1935–1939

On the one hand, we have two factor-2 approximation algorithms [9,10], which do not use kernelization techniques. On
the other hand, we can compute a kernel T ⊆ V (G) polynomially, such that |T | ≤ 15 ·ψ3(G[T]) (by [3] for d = 1). Since the
range between 2 and 15 is really large, the aim of this paper is to provide a polynomial algorithm which computes a better
kernel T for an arbitrary graph G, i.e. |T | ≤ 6 · ψ3(G[T]).

We consider finite, simple and undirected graphs and use [1] for terminology and notation which are not defined here.
A vertex subset S ⊆ V (G) is independent (dissociative) if G[S] contains no P2 (no P3). A set of vertex disjoint P3’s is a

P3-packing. It is maximal if there exists no P3 in G containing no vertex of a P3 in the P3-packing. For some maximal
P3-packing P , the graph G[V (G) \ V (P)] is the disjoint union of isolated vertices and isolated edges, i.e. V (G) \ V (P) is
a dissociative set in G. Let us denote by P2(P) its set of isolated P2’s and by P1(P) its set of isolated vertices. Furthermore,
let us define Q (P) as set of those vertices in V (P)which have a neighbour in V (P1(P))∪V (P2(P)). If P is a path inP , then
let us denote by Q (P) the set of vertices in P which are in Q (P). To simplify notation, let us say vertices in V (P) are black
and vertices in V (P1(P))∪ V (P2(P)) arewhite for some givenP . Moreover, all vertices inQ (P) are called contact vertices.
We define the white neighbourhood Nw(u) of a black vertex u as the subset of white vertices which are either adjacent to
u or have one white common neighbour with u. Additionally, let us define Nw1 (u) and Nw2 (u) as Nw(u) ∩ V (P1(P)) and
Nw(u) ∩ V (P2(P)), respectively. Again to simplify notation, let us denote for some dissociative set D by Q ′(D) the set of
all vertices u ∈ N(D) for which every neighbour in D is not isolated in G[D]. To generalize our concepts, let us define by f (T)
the set


u∈T f (u) \ T for some function f : V (G) → 2V (G) and some set T ⊆ V (G).

2. Results

Ourmain objective is to provide a polynomial algorithm computing a kernel of the 3-path vertex cover problem in G. We
need two important tools for it. First, we introduce the concept of a 3-path crown decomposition.

Definition. A 3-path crown decomposition (H, C, R) is a partition of the vertices of the graph G such that

(i) H (the header) separates C and R, i.e. there exist no edges between C and R,
(ii) C (the crown) is a dissociative set in G,
(iii) there exists a function F : H →


C∪H
3


such that {G[F(u)] : u ∈ H} is a P3-packing in G[H ∪ C] of cardinality |H| whose

every path contains exactly one vertex of H .

Special cases of the 3-path crown decomposition are introduced by Prieto and Sloper in [7] and are known as fat crown
decomposition and double crown decomposition. The first one requires the additional property that only end-vertices of the
P3’s in the P3-packing are elements of H while the second one considers C as an independent set in G.

The usefulness of the 3-path crown decomposition is presented in the next lemma.

Lemma 2.1. A graph G that admits a 3-path crown decomposition (H, C, R) has a 3-path vertex cover of size at most c if and
only if G[R] has a 3-path vertex cover of size at most c − |H|.

Proof. Since C is a dissociative set in G, S ′
∪ H is a 3-path vertex cover of size |S ′

| + |H| in G if S ′
⊆ R is a 3-path vertex

cover in G[R].
Let S be a 3-path vertex cover in G. Assume H ∩ (V (G) \ S) ≠ ∅. Due to the definition of a 3-path crown decomposition,

we have a P3-packing in G[H ∪ C] of cardinality |H| where each P3 has exactly one vertex in H . Since these P3 are covered
by H , it follows |C ∩ S| ≥ |H ∩ (V (G) \ S)|. This inequality implies that S \ (H ∪ C) is a 3-path vertex cover of size at most
|S| − |H|. �

According to the above lemma, ψ3(G) = ψ3(G[R]) + |H| follows easily by deleting C and H of a 3-path crown decom-
position. It indicates the importance of the lemma. Our aim is to provide a polynomial kernelization algorithm by using the
concept of 3-path crown decomposition. The computation of the latter one can be divided into two steps.

The first one considers the fat crown decomposition.

Lemma 2.2 (Prieto and Sloper [7]). Let G be a graph and J be a collection of independent P2’s such that |J| ≥ |N(V (J))|. Then
we can find a fat crown decomposition (H, C, R) where C ⊆ V (J) and H ⊆ N(V (J)) in linear time.

Let G be a graph and D be a dissociative set. To find a 3-path crown decomposition, we contract all edges in D and obtain
a graph G∗. By the above lemma, for some given dissociative set D in G either one can find a fat crown decomposition in
linear time, which perhaps is a 3-path crown decomposition, or the number of contracted edges is bounded from above by
|N(D)|. It helps us for the second step, which basically uses the property that we obtain an independent set by contracting
all edges in D.

Lemma 2.3. For a graph G and a dissociative set D, let G∗ be the graph constructed by edge contraction in D and adding
an additional vertex u′, which is only adjacent to u, for every vertex u ∈ Q ′(D). Furthermore, let us denote by D∗ the set
V (G∗) \ (V (G) \ D). If (H, C∗, R) is a double crown decomposition in G∗ such that C∗

⊆ D∗ and H ⊆ N(D∗), then
(H, V (G) \ (H ∪ R), R) is a 3-path crown decomposition in G such that V (G) \ (H ∪ R) ⊆ D and H ⊆ N(D).

C. Brause, I. Schiermeyer / Discrete Mathematics 339 (2016) 1935–1939 1937

Proof. From the definition of G∗ it is clear that V (G) \ (H ∪ R) is a dissociative set. Suppose that there exists an edge
between V (G) \ (H ∪ R) and R in G. It implies the existence of an edge between C∗ and R in G∗, which is a contradiction to
the definition of the double crown decomposition (H, C∗, R) in G∗. Let us denote by F∗ a function F∗

: H →


C∪H
3


such

that {G[F∗(u)] : u ∈ H} is a P3-packing in G[H ∪ C∗
] of cardinality |H| whose every path contains exactly one vertex of H .

For any u ∈ H , let us define F [u] by {u, v1, v2} if there exists a vertex v ∈ F∗(u) which corresponds to the contracted edge
v1v2 and F∗

[u] otherwise. Trivially, if the added vertex u′ of u ∈ Q (P ′) is an element of F∗
[u], then the third vertex in F∗

[u]
corresponds to a contracted edge. Furthermore, by the definition of G∗ and F∗, F fulfills all conditions in (iii) of the definition
of a 3-path crown decomposition. �

By the above lemma, it is clear that in the second step we reduce the problem of finding a 3-path crown decomposition
in G to the problem of finding a double crown decomposition in G∗. We have the following lemma, proved by Prieto and
Sloper in [7].

Lemma 2.4 (Prieto and Sloper [7]). Let G be a graph and I be an independent set such that |I| ≥ 2 · |N(I)|. We can find a double
crown decomposition (H, C, R) such that C ⊆ I and H ⊆ N(I) in linear time.

Combining both steps leads to the following lemma.

Lemma 2.5. Let G be a graph and D be a dissociative set such that |D| ≥ 3 · |N(D)| − |Q ′(D)|. We find a 3-path crown
decomposition (H, C, R) such that C ⊆ D and H ⊆ N(D) in O(n2).

Proof. In O(n2) we can decide whether or not the number of edges in D is at least |N(D)| (complexity follows from the
computation of N(D)). In the first case, we find a fat crown decomposition by Lemma 2.2 in linear time. In the second case,
we contract at most |N(D)| edges in O(m). Furthermore, we can compute Q ′(D) by checking for each vertex whether or not
it is an element of V (G) \D or is isolated in G[D] or none of both, and secondly considering all vertices in V (G) \D and check
whether or not they have a neighbour which is isolated in G[D] in O(n2). Afterwards, adding for every u ∈ Q ′(D) a vertex
u′, which is only adjacent to u, can be done in O(n) (please note that the number of new vertices is at most n). Altogether
gives a complexity of O(n2) for the computation of the new independent set D∗ and its neighbourhood N(D∗) = N(D). The
cardinality of D∗ is the number of vertices in D plus the number of added vertices minus the number of contracted edges.
Therefore, |D| ≥ 2 · |N(D)|. Now we find a 3-path crown decomposition by Lemma 2.4 in linear time. �

With Lemma 2.5 we have a powerful decomposition tool. Next, we focus on the computation of a special maximal
P3-packing, which is the second main tool we need to design our algorithm.

As further notation, let us define for some P3-packing P the set T(iii)(P) as follows: Add all P3’s of P which have in the
currently considered graph at most 3 white neighbours to T(iii)(P), delete NG[V (T(iii)(P))], and repeat this process as long
as such P3’s exist in P .

Now by deleting all paths in T(iii)(P) and their white neighbours we may obtain new white neighbourhoods for paths
not in T(iii)(P). Note that the number of white neighbours is at least 4 and the number of contact vertices on a path may
reduce. Using the newwhite neighbourhoods, let T(iv)(P) be the set of P3’s inP with one contact vertex and at least 4 white
neighbours, andT(v)(P)be the set of P3’s inP which are not inT(iii)(P)∪ T(iv)(P)but fulfill |Nw1 ({v1, v3})| = 1,Nw1 (v2) = ∅,
and Nw2 ({v1, v3}) = ∅.

Lemma 2.6. Let P be a P3-packing, and P = v1v2v3 be a path of length 2 in P . Then at least one of the following statements is
true:

(i) we find a P3-packing P ′ of cardinality at least |P | + 1,
(ii) we find a P3-packing P ′ of cardinality |P | such that |P2(P

′)| > |P2(P)|,
(iii) P ∈ T(iii)(P),
(iv) P ∈ T(iv)(P),
(v) P ∈ T(v)(P).

Proof. Suppose none of the statements is true. Since P is not an element of T(iii)(P), we consider the graph obtained by
deleting all paths of T(iii)(P) and their white neighbours. Now, every path in P has at least four white neighbours in the
obtained graph. Since P is not a path in T(iv)(P), P has at least 2 contact vertices.

Assume Nw2 (P) ≠ ∅. Then there exists a path of two vertices, denoted by w1 and w2, in G[Nw(P)]. We assume, without
loss of generality, thatw1 is adjacent to a vertex in Q (P).

If w1 is adjacent to v1 or v3, without loss of generality, assume it is v1, and a white vertex w3 of Nw(P) \ {w1, w2} has a
neighbour in {v2, v3}, then we find a P3-packing P ′

= (P \ {v1v2v3})∪{G[{v1, w1, w2}],G[{v2, v3, w3}]} with the property
described in (i). By this contradiction, we can assume, without loss of generality, that w1 is adjacent to v1 and all vertices
in Nw(P) \ {w1, w2} are non-adjacent to v2 and v3. Consequently, by Nw(P) ≥ 4, there exist two distinct verticesw3, w4 ∈

Nw(P) \ {w1, w2} such that G[{v1, w3, w4}] is a P3. By |Q (P)| ≥ 2 we have that w1 or w2 is adjacent to v2 or v3 (say wi is
adjacent to one of them), which implies that we find a P3-packing P ′

= (P \ {v1v2v3}) ∪ {G[{v1, w3, w4}],G[{v2, v3, wi}]}

with the property described in (i), a contradiction.

1938 C. Brause, I. Schiermeyer / Discrete Mathematics 339 (2016) 1935–1939

The above contradictions imply that no vertex in Nw2 (P) is adjacent to v1 or v3.
Let us consider the case wherew1, the end-vertex of a white path of two vertices, is adjacent to v2. Let us denote byw2 its

neighbour in Nw2 (P). Since we assume |Q (P)| ≥ 2, there exists at least one vertexw3 ∈ Nw1 (P)which is adjacent to v1 or v3.
Assume,without loss of generality, thatw3 is a neighbour of v1. If there exists a vertexw4 ∈ Nw1 (P), different fromw1, w2 and
w3, then we find a P3-packing P ′

= (P \ {v1v2v3})∪{w3v1w4, v2w1w2} ifw4 is adjacent to v1, a contradiction to (i). Hence,
w4 is non-adjacent to v1. Now, P ′

= (P \ {v1v2v3}) ∪ {v3v2w4} is a P3-packing if w4 is adjacent to v2. This contradicts
(ii) and implies that w4 is adjacent to v3. Therefore, we find a P3-packing P ′

= (P \ {v1v2v3}) ∪ {w3v1v2, w4v3w5} or
P ′

= (P \ {v1v2v3}) ∪ {v2v3w4} depending on whether or not there exists a vertexw5 ∈ N1
w(v3) \ {w1, w2, w3, w4}. This

contradicts (i) or (ii). Now (v) follows, a contradiction.
Note that, above transformations imply |P2(P)| ≤ |P2(P

′)| + 2 whenever |P ′
| > |P |.

The above contradictions imply Nw2 (P) = ∅ and |Nw1 (P)| ≥ 4. If |Nw1 (v1)| ≥ 2 or |Nw1 (v3)| ≥ 2, then, without loss of
generality, let w1, w2 ∈ Nw1 (v1). Since |Q (P)| ≥ 2, without loss of generality, there exists a vertex w3 ∈ Nw1 (P) \ {w1, w2}

which is adjacent to v2 or v3 and we find a P3-packing P ′
= (P \ {v1v2v3}) ∪ {G[{v1, w1, w2}],G[{v2, v3, w3}]} with the

property described in (i). This contradiction implies that we can assume, without loss of generality, that |Nw1 (v1)| = 1 and
|Nw1 (v2) \ Nw1 (v1)| ≥ 2, i.e. let w1 ∈ Nw1 (v1), w2, w3 ∈ Nw1 (v2) be pairwise distinct vertices. Now we find a P3-packing
P ′

= (P \ {v1v2v3}) ∪ {w2v2w3} with the property described in (ii), a contradiction.
The above contradictions prove the lemma. �

The proof of the above lemma consists of a case distinction on Nw(P). For some P3-packing, we can compute Nw1 (u) and
Nw2 (u) for all black vertices u ∈ V (G) based on the following algorithm in O(n2): For each vertex check whether it is black
or it is white and has no white neighbour or it is white and has a white neighbour. Afterwards, for every black vertex u
and every white neighbour v of u, v belongs to Nw1 (u) if v is white and has no white neighbour. Otherwise, v and its white
neighbour belong to Nw2 (u).

After computing the white neighbourhood, we can check whether or not a path of P has at most 3 white neighbours,
in a positive case, add it to T(iii)(P), delete all of its neighbours from the white neighbourhoods of other paths in O(n), and
repeat this process as long as possible. Since the number of paths is at most O(n) and we have at most O(n) repetitions, this
procedure can be done in at most O(n3).

Now the decision on whether or not (iii) or (iv) of Lemma 2.6 is fulfilled and, in a negative case, the computation of P ′

can be done in O(1) for some given path P ∈ P \ T(iii)(P) and in O(n) for all paths of P \ T(iii)(P).
The inductive repetition of the operations in the proof of Lemma 2.6 provides a method, how to compute a maximal

P3-packing P ′ such that P ′
= T(iii)(P

′) ∪ T(iv)(P
′) ∪ T(v)(P

′).
Let us denote the transition of P to P ′ as suggested in statements (i) and (ii) of Lemma 2.6 as an operation. It is clear that

at least the cardinality of the P3-packing or the number of P2’s in the remaining graph increases. But by further observation
on the case analysis in the proof, whenever the number of P3’s increases, the cardinality of P2(P

′) decreases by at most 2.
Hence, we apply at most n operations to find a maximal P3-packing P ′ such that P ′

= T(iii)(P
′) ∪ T(iv)(P

′) ∪ T(v)(P
′).

The following idea computes a maximal P3-packing inO(m ·n). LetP be an empty P3-packing. For every edge uv ∈ E(G),
checkwhether or notu and v are inV (P). If both are not, then checkwhether or not there exists a neighbourw ∈ V (G)\V (P)
of {u, v}. In a positive case, add G[{u, v, w}] to P and continue with the next edge.

The above statements imply the following lemma.

Lemma 2.7. One can compute a maximal P3-packing P such that P = T(iii)(P) ∪ T(iv)(P) ∪ T(v)(P) in O(n4).

We have introduced the two main tools of our proof. Let us consider a P3-packing P as stated in Lemma 2.7. Then we
denote by S2(P) the set V (P2(P)) \ Nw(V (T(iii)(P))), i.e. it is the vertex set of all P2’s in P2(P), which are not in the white
neighbourhood of a P3 in T(iii)(P). Similarly, S1(P) is defined as the set V (P1(P)) \ Nw(V (T(iii)(P) ∪ T(v)(P))), i.e. it is the
set of all vertices in P1(P), which are not in the white neighbourhood of a P3 in T(iii)(P) ∪ T(v)(P). S ′

1(P) denotes the set
Nw1 (V (T(v)(P))) \ Nw(V (T(iii)(P))), i.e. all vertices of P1(P), which are adjacent to some P3 in T(v)(P) but not to some P3
in T(iii)(P). Clearly, S2(P), S1(P), S ′

1(P),N
w(V (T(iii)(P))) is a decomposition of V (G) \ V (P).

Please recall that Nw1 (v) and Nw2 (v) are computable for all v ∈ V (G) \ V (P) in O(n2). Afterwards, we can compute
T(iii)(P), T(iv)(P) and T(v)(P) in O(n3). Since the white neighbourhood of a vertex is already computed, we find
Nw(T(iii)(P)) by selecting each white neighbour of a vertex in V (T(iii)(P)) in O(n). Now any white vertex in Nw1 (V (P)),
which was not selected by the previous step, belongs to S ′

1(P) or S1(P) depending on whether or not it is adjacent to a
vertex in T(v)(P). Trivially, this can be now decided in O(n). Similarly, we have the same time complexity for computing
S2(P).

Using above notations and complexities, we obtain Algorithm 1 and our main theorem.

Theorem 2.8. Algorithm 1 computes two disjoint sets T1, T2 in O(n5) such that

(i) for any 3-path vertex cover S ′ in G[T2], S ′
∪ T1 is a 3-path vertex cover in G,

(ii) there exists a minimum 3-path vertex cover in G which contains T1, and
(iii) |T2| ≤ 6 · ψ3(G[T2]).

C. Brause, I. Schiermeyer / Discrete Mathematics 339 (2016) 1935–1939 1939

Algorithm 1
1: T1 := ∅, T2 := V (G)
2: Compute a maximal P3-packing P in G such that P = T(iii)(P) ∪ T(iv)(P) ∪ T(v)(P).
3: while |S2(P) ∪ S1(P)| ≥ 3 · |N(S2(P) ∪ S1(P))| − |Q ′(S2(P) ∪ S1(P))| do
4: Compute a 3-path crown decomposition (H, C, R) in G[T2] using the dissociative set S2(P) ∪ S1(P).
5: T1 := T1 ∪ H , T2 := T2 \ (H ∪ C)
6: Compute a maximal P3-packing P in G such that P = T(iii)(P) ∪ T(iv)(P) ∪ T(v)(P).
7: end while

Proof. The time-complexity for steps 2, 4, 6 and the decision in 3 is given by the above results. Moreover, since we delete
vertices, the number of loop repetitions is at most n. This observation gives the complexity of our algorithm. Obviously, T2
is the set of vertices which remain in the graph after the algorithm stops. Furthermore, T1 consists of all headers H . The
concept of 3-path crown decomposition gives (i) and (ii).

Let P be a maximal P3-packing computed in steps 2 or 6 for G[T2]. Then ψ3(G[T2]) ≥ |P |. Moreover, by definition we
have

T2 =


V (T(iii)(P)) ∪ Nw(V (T(iii)(P)))


∪


[V (T(iv)(P) ∪ T(v)(P))] ∪ S2(P) ∪ S1(P) ∪ S ′

1(P)


and V (T(iii)(P)) ∪ Nw(V (T(iii)(P)))
 ≤ 6 ·

T(iii)(P).
Since every path in T(v)(P) has at most one white neighbour in S ′

1(P), we have |S ′

1(P)| ≤ |T(v)(P)|. Furthermore, every
path in T(v)(P) contains a vertex of Q ′(S2(P) ∪ S1(P)). Hence, it follows |S ′

1(P)| ≤ |Q ′(S2(P) ∪ S1(P))|. We concludeV (T(iv)(P) ∪ T(v)(P))


∪ S2(P) ∪ S1(P) ∪ S ′

1(P)


≤

V (T(iv)(P) ∪ T(v)(P))


∪ S2(P) ∪ S1(P)
 +

Q ′(S2(P) ∪ S1(P))
.

Since the condition for applying the loop is not fulfilled and every path in T(iv)(P) ∪ T(v)(P) contains at most one vertex
which is adjacent to vertices in S2(P) ∪ S1(P),V (T(iv)(P) ∪ T(v)(P))


∪ S2(P) ∪ S1(P)

 ≤ 6 ·

T(iv)(P) ∪ T(v)(P)
 −

Q ′(S2(P) ∪ S1(P))


is true. Together, both inequalities implyV (T(iv)(P) ∪ T(v)(P))


∪ S2(P) ∪ S1(P) ∪ S ′

1(P)
 ≤ 6 · |T(iv)(P) ∪ T(v)(P)|.

Now we obtain the desired result |T2| ≤ 6 · |P | ≤ 6 · ψ3(G[T2]). �

Acknowledgements

We would like to thank the two reviewers for their valuable hints and comments.

References

[1] J.A. Bondy, U. Murty, Graph Theory, Springer, 2008.
[2] B. Brešar, F. Kardoš, J. Katrenič, G. Semanišin, Minimum k-path vertex cover, Discrete Appl. Math. 159 (2011).
[3] M.R. Fellows, J. Guo, H. Moser, R. Niedermeier, A generalization of Nemhauser and Trotter´s local optimization theorem, J. Comput. System Sci. 77

(2011) 1141–1158.
[4] F. Kardoš, J. Katrenič, I. Schiermeyer, On computing the minimum 3-path vertex cover and dissociation number of graphs, Theoret. Comput. Sci. 412

(2011) 7009–7017.
[5] G. Nemhauser, J. Trotter, L.E., Vertex packings: Structural properties and algorithms, Math. Program. 8 (1975) 232–248.
[6] M. Novotný, Design and analysis of a generalized canvas protocol, in: P. Samarati, M. Tunstall, J. Posegga, K. Markantonakis, D. Sauveron (Eds.),

Information Security Theory and Practices. Security and Privacy of Pervasive Systems and Smart Devices, in: Lecture Notes in Computer Science,
vol. 6033, Springer, Berlin, Heidelberg, 2010, pp. 106–121.

[7] E. Prieto, C. Sloper, Looking at the stars, Theoret. Comput. Sci. 351 (2006) 437–445.
[8] J. Tu, F. Yang, The vertex cover P3 problem in cubic graphs, Inf. Process. Lett. 113 (2013) 481–485.
[9] J. Tu, W. Zhou, A factor 2 approximation algorithm for the vertex cover P3 problem, Inf. Process. Lett. 111 (2011) 683–686.

[10] J. Tu, W. Zhou, A primal–dual approximation algorithm for the vertex cover P3 problem, Theoret. Comput. Sci. 412 (2011) 7044–7048.

http://refhub.elsevier.com/S0012-365X(15)00439-2/sbref1
http://refhub.elsevier.com/S0012-365X(15)00439-2/sbref2
http://refhub.elsevier.com/S0012-365X(15)00439-2/sbref3
http://refhub.elsevier.com/S0012-365X(15)00439-2/sbref4
http://refhub.elsevier.com/S0012-365X(15)00439-2/sbref5
http://refhub.elsevier.com/S0012-365X(15)00439-2/sbref6
http://refhub.elsevier.com/S0012-365X(15)00439-2/sbref7
http://refhub.elsevier.com/S0012-365X(15)00439-2/sbref8
http://refhub.elsevier.com/S0012-365X(15)00439-2/sbref9
http://refhub.elsevier.com/S0012-365X(15)00439-2/sbref10

	Kernelization of the 3 -path vertex cover problem
	Introduction
	Results
	Acknowledgements
	References

