
Quiz 2

Recall the following definitions:

A rooted binary tree is a tree where every node (except the root) has a parent, and every node
(except the leaves) has one or two children. The leaf is a node with no children, and teh root is a
node with no parent.

𝑑
2𝑖 𝑖 1 ≤ 𝑖 ≤ 𝑑

A complete binary tree is a binary tree where all nodes except the leaves have exactly two
children. If the maximum root to leaf distance (aka the height of the tree) is , then a complete
binary tree has vertices at a distance of from the root, for all .

𝑆 𝑆
2𝑑 𝑑

A heap on a set organizes the elements of in an “almost” complete binary tree: such a tree is a
complete binary tree with one exception: there may be fewer than vertices at distance from
the root.

A max heap has the property that every element is greater than or equal to its children.

A min heap has the property that every element is less than or equal to its children.

𝑆 𝑑 2𝑑 − 1
𝑑

[1 mark] Suppose we have a min-heap with layers and elements, i.e, the structure of
the heap is a complete binary tree of height . Assume all elements are distinct.

𝑑 > 2Which of the following elements has to be a leaf? Assume .

𝑆(A) the second-largest element of

𝑆(B) the smallest element of

𝑆(C) the second-smallest element of

𝑆(D) the third-largest element of

𝑆 𝑑 2𝑑 − 1
𝑑

[2 marks] Suppose we have a min-heap with layers and elements, i.e, the structure of
the heap is a complete binary tree of height . Assume all elements are distinct.

𝐴 1 𝑆 𝐴[2𝑑−1]
𝑆

Let be an -indexed array that has the elements of in sorted order. Note that is the

median element of . Which of the following elements cannot be a child of the root?

𝐴[2𝑑−1] 𝐴[2𝑑−1 + 1] 𝐴[2𝑑−1 − 1] 𝐴[2𝑑−1 + 2](A) (B) (C) (D)

1, 2, …, 𝑛
𝑛 = 2𝑑 − 1 𝑛 𝑛 − 1

𝑛 𝑑

𝑛 = 7 10

[2 marks] Suppose we have an empty min-heap and we insert the elements into it in
reverse order, where . That is, we first insert , then insert , and so on.

After this sequence of operations is complete, how many times did we execute a swap operation
between two elements? Write your answer in terms of either or .

Sanity check: if , the number of swaps is :

7inserting requires no swaps

6 5inserting and requires one swap each

inserting the remaining four elements requires two swaps each

For full credit, work out a closed form expression — no summation signs :)

tex://d
tex://i
tex://S
tex://S
tex://d
tex://S
tex://d
tex://d
tex://S
tex://S
tex://S
tex://S
tex://S
tex://d
tex://d
tex://A
tex://1
tex://S
tex://S
tex://n
tex://n-1
tex://n
tex://d
tex://10
tex://7
tex://6
tex://5

𝑆
𝑀

[4 marks] Suppose you are maintaining a min and max heap simultaneously for a set of elements
 using the algorithms discussed in class. Let the maximum number of swaps that you have to

perform in a single heap be .

𝑘
𝑒 𝑎

𝑏

𝑒 𝑘

Assume that elements have been inserted into both heaps so far, and elements are not repeated.

Suppose a new element is inserted into both the heaps, and this causes you to perform swaps

in the min heap and swaps in the max heap. Justify your answers to the following questions with

examples or an argument.

Assume that is distinct from all the elements already present in the heap.

𝑎 + 𝑏 = 2𝑀(A) Is it possible that ?

𝑎 + 𝑏 = 𝑀(B) Is it possible that ?

𝑎 = 𝑏 = 1(C) Is it possible that ?

𝑎 = 𝑏 = 0(D) Is it possible that ?

[2 marks] Build a min-heap out of the following sequence and report the final heap as an array,
and the number of swaps.

408, 248, 308, 399, 484, 32, 439, 403, 87, 10

𝐺 𝑆
𝑒 = (𝑢, 𝑣) 𝑆 𝑢 ∈ 𝑆 𝑣 ∈ 𝑆

[2 marks] A vertex cover of a simple undirected graph is a subset of vertices such that for
every edge has at least one of its endpoints in , i.e, either or (or both).

𝐺Which of the following is a vertex cover of a graph ?

𝐺(A) the leaves of a DFS tree of

𝐺(B) all vertices except the leaves of a DFS tree of

𝐺(C) the leaves of a BFS tree of

𝐺(D) all vertices except the leaves of a BFS tree of

[2 marks] Consider the slightly buggy implementation of BFS below:

current <- {start_vertex}
while current is not the set of all the vertices
	 found ‹- {}
	 for v in current:
	 	 for each w adjacent to v:
	 	 	 add w to found
	 current <- found

Some undirected graphs are described in terms of their edge lists below. For each, determine if

the program above will terminate or not. Answer YES or NO.

(a)

(1 2), (1 3), (2 3)

(b)

(2, 1), (3, 5), (1, 6), (2, 5), (3, 1), (8, 4), (2, 7), (7, 1), (7, 4)

tex://S
tex://M
tex://k
tex://e
tex://a
tex://b
tex://e
tex://k
tex://G
tex://S
tex://S
tex://G
tex://G
tex://G
tex://G
tex://G

