	А	В	С
Object 1	1	0	5
Object 2	2	1	6
Object 3	3	2	8
Object 4	4	4	7
Object 5	5	5	9
Object 6	6	3	0
Object 7	7	9	4
Object 8	8	7	3
Object 9	9	6	2
Object 10	0	8	1

1. You have to distribute 10 objects among 3 children. Each child has a specific value for each object given by the following table:

For example, **B** values object **7** at **9** units. The higher the value, the happier the child is to get the object in question.

If a child is given some combination of objects, their *total value* for the combination is simply the sum of the values they have for the individual objects. For instance, if **C** is given the objects $\{3,7,8\}$ then her total value for this "bundle" is 8 + 4 + 3 = 15.

Suppose A is given the bundle {1,2,9,10}, B is given the bundle {3,4}, and C is given the bundle {5,6,7,8}. Then the following shows what everyone thinks of their own bundle and the bundle given to others.

	{1,2,9,10}	{3,4}	{5,6,7,8}
А	1+2+9+0 = 12	3+4 = 7	5+6+7+8 = 26
В	0+1+6+8 = 15	2+4 = 6	5+3+9+7 = 24
С	5+6+2+1 = 14	8+7 = 15	9+0+4+3 = 16

Notice that in the situation above:

- A values C's bundle more than their own bundle.
- B values both A's bundle and C's bundle more than their own bundle.
- C values their own bundle more than either A's bundle or B's bundle.

If a child values another child's bundle *more than their own*, then they are said to be jealous of the other child. In the example above, A is jealous of C and B is jealous of A and C, and C is jealous of nobody.

Consider the following process for distributing items among children:

Place all the objects on a table.

Repeat the following while there is at least one object left on the table:

- 1. Among the objects currently available on the table, pick the one that **A** values the most and give it to **A**.
- 2. Among the objects currently available on the table, pick the one that **B** values the most and give it to **B**.
- 3. Among the objects currently available on the table, pick the one that **C** values the most and give it to **C**.

Question 1A. Write down the bundles given to A,B, and C based on the algorithm above and indicate how much each of A,B,C value each of these bundles in the table below.

	Bundle given to A =	Bundle given to B =	Bundle given to C =
А			
В			
С			

How confident are you about your answer?

(A) **O** quite certain (B) **O** reasonably sure (C) **O** (educated) guess

Question 1B. What can you say about the distribution of bundles obtained at the end? Check all that apply.

- (A) \bigcirc A will not be jealous of B
- (B) \bigcirc A will not be jealous of C
- (C) O B will not be jealous of A
- (D) O B will not be jealous of C
- (E) O C will not be jealous of A
- (F) O C will not be jealous of B

How confident are you about your answer?

(A) C	quite certain	(B) 🔘 reasonably sure	(C)	0	(educated) guess
--------------	---------------	-----------------------	-----	---	------------------

Question 1C. What can you say about the distribution of bundles obtained at the end *for any arbitrary input*, instead of the ones given above? Check all that apply.

- (A) O A will not be jealous of B
- (B) \bigcirc A will not be jealous of C
- (C) O B will not be jealous of A
- (D) O B will not be jealous of C
- (E) O C will not be jealous of A
- (F) O C will not be jealous of B

How confident are you about your answer?

(A) **O** quite certain (B) **O** reasonably sure (C) **O** (educated) guess

Question 1D. Come up with an example of an input with four children **A**,**B**,**C** and **D** and **15 objects** for which the output has the following property:

- (A) A is not jealous of B
- (B) A is not jealous of C
- (C) B is jealous of A
- (D) B and C value each other's bundles exactly the same
- (E) C is not jealous of A
- (F) D is jealous of A and C but not B

Specify your input and output in the tables below.

	А	В	С	D
Object 1				
Object 2				
Object 3				
Object 4				
Object 5				
Object 6				
Object 7				
Object 8				
Object 9				
Object 10				
Object 11				
Object 12				
Object 13				
Object 14				
Object 15				

	A's bundle =	B's bundle =	C's bundle =	D's bundle =
А				
В				
С				
D				

How confident are you about your answer?

(A) **O** quite certain (B) **O** reasonably sure (C) **O** (educated) guess

Question 1E. Generalize the algorithm above in the natural way for distributing M objects among N children. Add the N children to a queue in alphabetical order of their names (assume that all children have different names), place all objects on a table. Let us say you have a function

find_most_valued(C,X) which takes as input the ID of a child and some subset of X, and returns the most valued object among the objects in X.

Then the algorithm works as follows:

Repeat the following while there is at least one object left on the table:

Let C be the child at the head of the queue.

Let X be the current set of objects on the table.

Let f be the output of the function find_most_valued(C,X).

Assign f to C, remove f from the table, and move C back to the tail of the queue.

(A) <mark>O</mark> n times	(B) O m times	(C) Onm times	(D) O None of the above
How confident are	you about your answ	ver?	
(A) O quite certa	in (B) 🔿 reasona	ably sure (C) <mark>O</mark> (e	educated) guess

Question 1F. Suppose the queue is implemented using the cardstack data structure, the set of objects on the table is maintained using a linked list, and you use n arrays to track the assignments of objects to children. How long does the algorithm in the previous question take to run? Remember to account for the time taken by find_most_valued to do its job.

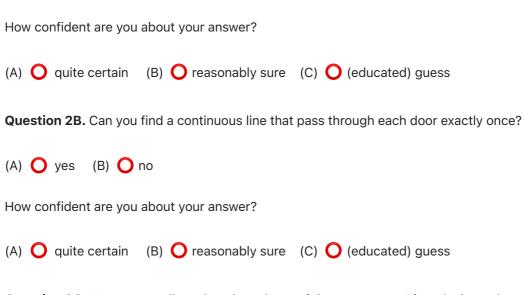
(A) $\bigcirc \approx n$ (B) $\bigcirc \approx nm$ (C) $\bigcirc \approx m$ (D) $\bigcirc \approx m^2$ (E) $\bigcirc \approx n^2$ (F) \bigcirc None of the above

How confident are you about your answer?

(A)	Ο	quite certain	(B) Ϲ	reasonably sure	(C)	Ο	(educated) gu	less
-----	---	---------------	-------	-----------------	-----	---	---------------	------

Question 1G. Suppose we have two children named A and B. Note that A is ahead of B in the queue used by the algorithm, i.e, A picks items from the table before B does. Which of the following is always true with respect to the output of the algorithm, no matter what values A and B have for the M objects? Check exactly one among the options below.

- (A) O A is not jealous of B
- (B) O B is not jealous of A
- (C) O A is not jealous of B and B is not jealous of A
- (D) **O** None of the above


How confident are you about your answer?

(A) **O** quite certain (B) **O** reasonably sure (C) **O** (educated) guess

2. Consider the following 5-room apartment:

Question 2A. If we make this floor plan into a graph (keeping the next question in mind), what does it look like? Explain the association between the structure of your graph and the floor plan.

Question 2C. Now we are allowed to close doors of the apartment. After closing at least how many doors we can find a continuous line that passes through each door exactly once? Answer 0 if your answer to the previous question was **YES**. Write your answer with an explanation overleaf.

How confident are you about your answer?

